1,6-Bis(3-methyl-1-pyridinium)hexane dibromide ([B3PH]Br2).
1.00 cm pathlength quartz cells. The electrospray mass spectra
were obtained on a QstarXL MS/MS system, with an ESI
source, with the samples prepared in distilled water. The energy-
minimization calculations (Fig. 1) were carried out with the MM2
program in the Chem3D Pro (Version 11.0.1, CambridgeSoft)
software.
◦
1
Yield: 55%, mp 157–162 C. H NMR (D2O, 400 MHz) d 8.62
(s, 2H, H2), 8.57 (d, 2H, H6, J = 6.0 Hz), 8.30 (d, 2H, H4, J =
8.0 Hz), 7.87 (t, 2H, H5, J = 7.0 Hz), 4.49 (t, 4H, Ha, J = 7.9 Hz),
2.48 (s, 6H, CH3), 1.94 (m, 4H, Hb), 1.32 (m, 4H, Hg) ppm. 13C
NMR (D2O, 100 MHz) d 145.98 (C4), 143.66 (C2), 141.23 (C6),
139.91 (C3), 127.39 (C5), 61.45 (Ca), 30.24 (Cb), 24.78 (Cg), 17.60
(CH3) ppm. HR-ESIMS calcd for C18H26N2 [M - 2Br]2+ m/z =
135.1042; found 135.1043.
Conclusions
A series of 1:1 (including [2]pseudorotaxanes) and 2:1 host-
guest complexes may be formed between cucurbit[7]uril as and
dicationic a,w-bis(pyridinium)alkane chains in aqueous solution.
The relative 1:1 and 2:1 host-guest stability constants are related
to the natures of the cationic head groups and the alkyl linkers.
The CB[7] cyclic component in the [2]pseudorotaxane may be
moved along the dicationic thread to one of the end groups by the
complexation by a second CB[7] host on other end group.
1,6-Bis(4-dimethylamino-1-pyridinium)hexane
dibromide
([BAPH]Br2). Yield: 80%, mp 275–276 ◦C. 1H NMR (D2O,
400 MHz) d 7.92 (d, 2H, H2, J = 7.6 Hz), 6.80 (d, 2H, H5, J =
7.6 Hz), 4.05 (t, 4H, Ha, J = 7.0 Hz), 3.14 (s, 12H, CH3), 1.78
(m, 4H, Hb), 1.25 (m, 4H, Hg) ppm. 13C NMR (D2O, 100 MHz)
d 156.29 (C4), 141.25 (C2), 107.47 (C3), 57.46 (Ca), 39.33 (CH3),
29.68 (Cb), 24.83 (Cg) ppm. HR-ESIMS calcd for C20H32N2 [M -
2Br]2+ m/z = 164.1308; found 164.1309.
1,6-Bis(4-tert-butyl-1-pyridinium)hexane dibromide ([BBPH]Br2).
Yield: 74%, mp 274–277 ◦C. (Lit.26 299–300 ◦C). 1H NMR (D2O,
500 MHz) d 8.63 (d, 4H, H2, J = 7.0 Hz), 8.01 (d, 4H, H3, J =
7.0 Hz), 4.49 (t, 4H, Ha, J = 7.2 Hz) 1.95 (m, 4H, Hb), 1.36 (s,
18H, CH3), 1.34 (m, 4H, Hg) ppm. 13C NMR (D2O, 125 MHz)
d 171.96 (C4), 143.67 (C2), 125.74 (C3), 61.00 (Ca), 36.32 (Ct),
30.59 (Cb), 29.49 (CH3), 25.18 (Cg) ppm. HR-ESIMS calcd for
C24H38N2 [M - 2Br]2+ m/z = 177.1512; found 177.1514.
Acknowledgements
The financial support of this research by the Natural Sciences
and Engineering Research Council of Canada (Discovery Grant
to DHM), the Ontario Ministry of Training and the Walter
C. Sumner Foundation (scholarships to IWW) is gratefully
acknowledged.
a,a¢-Bis(4-tert-butyl-1-pyridinium)-p-xylene
dibromide
([BBPX]Br2). Yield: 89%. mp > 300 ◦C. 1H NMR (D2O)
d 8.66 (d, 4H, H2, J = 5.6 Hz), 8.01 (d, 4H, H3, J = Hz), 7.44
(s, 4H, H2¢), 5.72 (s, 4H, Ha), 1.33 (s, 18H, CH3) ppm. 13C
NMR (D2O, 125 MHz) d 172.72 (C4), 143.93 (C2), 134.98 (C1¢),
130.11 (C2¢), 126.03 (C3), 63.30 (CH2), 36.44 (Ct), 29.45 (CH3).
HR-ESIMS calcd for C26H34N2 [M - 2Br]2+ m/z = 187.1355;
found 187.1356.
Notes and references
1 (a) W. L. Mock, Top. Curr. Chem., 1995, 175, 1; (b) O. A. Gerasko, D. G.
Samsonenko and V. P. Fedin, Russ. Chem. Rev., 2002, 71, 741; (c) J. W.
Lee, S. Samal, N. Selvapalam, H.-J. Kim and K. Kim, Acc. Chem. Res.,
2003, 36, 621; (d) J. Lagona, P. Mukhopadhyay, S. Chakrabarti and
L. Isaacs, Angew. Chem., Int. Ed., 2005, 44, 4844; (e) N. J. Wheate,
Aust. J. Chem., 2006, 59, 354; (f) K. Kim, N. Selvapalam, Y. H. Ko,
K. M. Park, D. Kim and J. Kim, Chem. Soc. Rev., 2007, 36, 267; (g) L.
Isaacs, Chem. Commun., 2009, 619.
2 (a) J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K.
Yamaguchi and K. Kim, J. Am. Chem. Soc., 2000, 122, 540; (b) A. Day,
A. P. Arnold, R. J. Blanch and B. Snushall, J. Org. Chem., 2001, 66,
8094.
3 S. Liu, P. Y. Zavalij and L. Isaacs, J. Am. Chem. Soc., 2005, 127, 16798.
4 S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij and
L. Isaacs, J. Am. Chem. Soc., 2005, 127, 15959.
Methods
The 1H and 13C NMR spectra were recorded on a Bruker
Avance 400 and 500 instrument in D2O and the resonance
assignments were confirmed using 2D COSY, HMBC, and
HMQC experiments. The 1:1 and 2:1 CB[7] host-guest stability
1
5 (a) W. S. Jeon, K. Moon, S. H. Park, H. Chun, Y. K. Ho, J. Y. Lee,
S. E. Lee, S. Samal, N. Selvapalam, M. V. Rekharsky, V. Sindelar,
D. Sobransingh, Y. Inoue, A. E. Kaifer and K. Kim, J. Am. Chem.
Soc., 2005, 127, 12984; (b) R. Wang, L. Yuan and D. H. Macartney,
Organometallics, 2006, 25, 1820; (c) L. Yuan and D. H. Macartney,
J. Phys. Chem. B, 2007, 111, 6949; (d) M. V. Rekharsky, T. Mori, C.
Yang, Y. H. Ko, N. Selvapalam, H. Kim, D. Sobransingh, A. E. Kaifer,
S. Liu, L. Isaacs, W. Chen, S. Moghaddam, M. K. Gilson, K. Kim and
Y. Inoue, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 20737; (e) D. P.
Buck, P. M. Abeysinghe, C. Cullinane, A. I. Day, J. G. Collins and
M. M. Harding, Dalton Trans., 2008, 2328.
6 (a) N. J. Wheate, A. I. Day, R. J. Blanch, A. P. Arnold, C. Cullinane
and J. G. Collins, Chem. Commun., 2004, 1424; (b) Y. J. Jeon, S. Y. Kim,
Y. H. Ko, S. Sakamoto, K. Yamaguchi and K. Kim, Org. Biomol. Chem.,
2005, 3, 2122; (c) N. J. Wheate, D. P. Buck, A. I. Day and J. G. Collins,
Dalton Trans., 2006, 451; (d) S. Kemp, N. J. Wheate, S. Wang, J. G.
Collins, S. F. Ralph, A. I. Day, V. J. Higgins and J. P. Aldrich-Wright,
JBIC, J. Biol. Inorg. Chem., 2007, 12, 969.
constants were determined from H NMR competition studies
◦
at 25 C in D2O containing 0.050 mol dm-3 acetate buffer
(0.050 mol dm-3 NaOAc-d3/0.025 mol dm-3 DCl, pD = 4.75).
For the 1:1 complexes, the ratio of CB[7]:guest:competitor was
generally 3:4:4, with 3–4 mmol dm-3 CB[7]. For the 2:1 com-
plexes, the CB[7]:guest:competitor was generally 6:4:3, with 6–
8 mmol dm-3 CB[7], using a competitor with a lower CB[7]
binding constant than that of the CB[7] binding to the 1:1 host-
guest. It is assumed in the calculations under these conditions
that the 1:1 species is essentially fully formed. The competitor
guests used were 3-(trimethylsilyl)propionic acid (KCB[7] = (1.82
0.22) ¥ 107 dm3 mol-1),2b benzyltrimethylammonium bromide
((2.5 0.6) ¥ 108 dm3 mol-1),10 p-xylenediamine ((1.84 0.34) ¥
109 dm3 mol-1),2b 1-(trimethylammonio)methylferrocene iodide
((3.31 0.62) ¥ 1011 dm3 mol-1),10 tetramethylammonium bromide
((1.2 0.4) ¥ 105 dm3 mol-1),10 and tetraethylammonium bromide
((1.0 0.2) ¥ 106 dm3 mol-1).10 The UV spectra were recorded
on a Hewlett-Packard 8452A diode-array spectrometer using
7 (a) M. E. Bush, N. D. Bouley and A. R. Urbach, J. Am. Chem. Soc.,
2005, 127, 14511; (b) M. L. Heitmann, A. B. Taylor, P. J. Hart and
A. R. Urbach, J. Am. Chem. Soc., 2006, 128, 12574; (c) A. Henning,
H. Bakirci and W. M. Nau, W. M., Nat. Methods, 2007, 4, 629; (d) A.
Hennig, G. Ghale and W. M. Nau, Chem. Commun., 2007, 1614.
4050 | Org. Biomol. Chem., 2009, 7, 4045–4051
This journal is
The Royal Society of Chemistry 2009
©