J. Am. Chem. Soc. 2001, 123, 1527-1528
Site-Specific Incorporation of Nitroxide Spin-Labels
Scheme 1. Preparation of Spin-Labeled RNA
1527
into Internal Sites of the TAR RNA;
Structure-Dependent Dynamics of RNA by EPR
Spectroscopy
Thomas E. Edwards, Tamara M. Okonogi,
Bruce H. Robinson, and Snorri Th. Sigurdsson*
Department of Chemistry, UniVersity of Washington
Seattle, Washington 98195-1700.
ReceiVed September 27, 2000
ReVised Manuscript ReceiVed December 12, 2000
1
label into specific internal, base-paired sites of RNA and analysis
of the spin-labeled RNA by EPR.
RNA can catalyze chemical reactions and interacts in specific
ways with other macromolecules, such as proteins. The mecha-
nistic understanding of RNA function relies on structural informa-
tion; however, solving crystal structures of complex RNA
molecules remains challenging. Therefore, other biophysical
techniques have been used to determine the position of RNA
secondary structure elements (i.e., helices, stem-loops, etc.) in
Nitroxide spin-labels have been incorporated into DNA, by
11
conjugation to either the nucleoside base or the sugar-phosphate
backbone.12 However, the currently available methods for the
incorporation of spin-labels into RNA are restricted to either an
unpaired uridine13 or the 5′-end. Both of these strategies are
somewhat limited because the spin-label cannot be conjugated
to internal, base-paired nucleotides. A variety of molecules have
been conjugated to the 2′-position of base-paired nucleotides in
RNA.15 Particularly attractive is the use of a 2′-amino-modified
RNA, which can be prepared by automated chemical synthesis
using commercially available phosphoramidites (Scheme 1). The
2
14
3
three-dimensional space. For example, fluorescence resonance
energy transfer (FRET) can be used to measure long-range
distances (35-85 Å). Techniques that allow measurement of
intermediate distances would be valuable for improving the
4
resolution of RNA structural models that are derived from FRET
and other biophysical techniques.
2
′-amino group can be reacted with electrophiles, such as aliphatic
Electron paramagnetic resonance (EPR) spectroscopy has been
used to study protein structure and folding, and an EPR
spectroscopic ruler” has been described for measurement of
distances between two unpaired electrons separated by 8-25 Å.
Moreover, EPR has been used to determine the solvent acces-
sibility of spin-labels, making EPR analysis of RNA containing
a single unpaired electron a viable tool for the study of RNA
tertiary structure. EPR is also a sensitive probe of dynamics over
a wide range of motions (ps-ms) and has, for example, been
used to determine the sequence-dependent motion of DNA
duplexes. EPR may, thus, yield information about the role of
dynamics in RNA function, for which there is limited data
16
5
isocyanates.
An isocyanate derivative of tetramethylpiperidyl-N-oxy (TEMPO)
(1) was prepared in one step from the commercially available
“
6
17
4
-amino-TEMPO (Scheme 1). Subsequent reaction of isocyanate
7
1 with 2′-amino-modified RNA gave spin-labeled RNA in >90%
yield (Supporting Information). Electrospray MS and enzymatic
digestion of the modified oligomer verified incorporation of the
spin-label into RNA. HPLC analysis of the enzymatic digest
revealed the absence of a 2′-amino nucleoside and the presence
of a strongly retained substance that was shown to coelute with
the expected spin-labeled nucleoside, prepared by chemical
synthesis (Supporting Information). A nucleoside containing a
reduced spin-label was shown not to be present in the enzymatic
digests, demonstrating that the nitroxide was not reduced during
preparation of 118 or incorporation into RNA. Finally, EPR
spectroscopy of the spin-labeled RNA revealed the presence of a
free radical, as described below.
8
9
available. Furthermore, EPR active probes of dynamics have been
used to elucidate structural differences in local regions within
macromolecules.10 The application of EPR for the study of RNA
structure and dynamics requires incorporation of a stable free
radical. We describe here the incorporation of a nitroxide spin-
*
(
To investigate the effect of the spin-label on the stability of
RNA secondary structure, we incorporated the spin-label into the
structurally well-characterized trans-activation responsive region
1) For a recent review, see: The RNA World, 2nd ed.; Gesteland, R. F.,
Cech, T. R., Atkins, J. F., Eds.; Cold Spring Harbor: 1999; Vol. 37. Doherty,
E. A.; Doudna, J. A. Annu. ReV. Biochem. 2000, 69, 597-615.
(
2) For recent reviews, see: Doherty, E. A.; Doudna, J. A. Annu. ReV.
Biochem. 2000, 69, 597-615. Holbrook, S. R.; Kim, S. H. Biopolymers 1997,
(11) Spaltenstein, A.; Robinson, B. H.; Hopkins, P. B. Biochemistry 1989,
28, 9484-9495. Strobel, O. K.; Kryak, D. D.; Bobst, E. V.; Bobst, A. M.
Bioconjugate Chem. 1991, 2, 89-95. Miller, T. R.; Alley, S. C.; Reese, A.
W.; Solomon, M. S.; McCallister, W. V.; Mailer, C.; Robinson, B. H.; Hopkins,
P. B. J. Am. Chem. Soc. 1995, 117, 9377-9378.
4
1
1
4, 3-21.
(
3) For a recent review, see: Kjems, J.; Egebjerg, J. Curr. Opin. Biotechnol.
998, 9, 59-65.
(
4) Tuschl, T.; Gohlke, C.; Jovin, T. M.; Westhof, E.; Eckstein, F. Science
994, 266, 785-788. Walter, N. G.; Hampel, K. J.; Brown, K. M.; Burke, J.
(12) Nagahara, S.; Murakami, A.; Makino, K. Nucleosides Nucleotides
1992, 11, 889-901.
M. EMBO J. 1998, 17, 2378-2391. Walter, F.; Murchie, A. I. H.; Lilley, D.
M. J. Biochemistry 1998, 37, 17629-17636.
(
(13) Ramos, A.; Varani, G. J. Am. Chem. Soc. 1998, 120, 10992-10993.
Hara, H.; Horiuchi, T.; Saneyoshi, M.; Nishimura, S. Biochem. Biophys. Res.
Commun. 1970, 38, 305-311.
5) For a recent review, see: Hubbell, W. L.; Cafiso, D. S.; Altenbach, C.
Nat. Struct. Biol. 2000, 7, 735-739.
6) Rabenstein, M. D.; Shin, Y. K. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
239-8243. Hustedt, E. J.; Smirnov, A. I.; Laub, C. F.; Cobb, C. E.; Berth,
A. H. Biophys. J. 1997, 72, 1861-1877.
7) Lin, Y.; Nielsen, R.; Murray, D.; Hubbell, W. L.; Mailer, C.; Robinson,
(
(14) Macosko, J. C.; Pio, M. S.; Tinoco, I. Jr.; Shin, Y. K. RNA 1999, 5,
1158-1166.
8
(15) Manoharan, M. In Antisense Research and Applications; Crooke, S.
T., Lebleu, B., Eds.; CRC Press: Boca Raton, Ann Arbor, London, Tokyo,
1993; pp 303-349. Douglas, M. E.; Beijer, B.; Sproat, B. S. Bioorg. Med.
Chem. Lett. 1994, 4, 995-1000. Sigurdsson, S. T.; Tuschl, T.; Eckstein, F.
RNA 1995, 1, 575-583.
(
B. H.; Gelb, M. H. Science 1998, 279, 1925-1929. Ball, A.; Nielsen, R.;
Gelb, M. H.; Robinson, B. H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6637-
6
642. Oh, K. J.; Altenbach, C.; Collier, R. J.; Hubbell, W. L. Methods Mol.
Biol. 2000, 145, 147-169.
8) Okonogi, T. M.; Alley, S. C.; Reese, A. W.; Hopkins, P. B.; Robinson,
B. H. Biophys. J. 2000, 78, 2560-2571.
9) For a recent review see: Hagerman, P. J. Annu. ReV. Biophys. Biomol.
Struct. 1997, 26, 139-156.
10) Spaltenstein, A.; Robinson, B. H.; Hopkins, P. B. J. Am. Chem. Soc.
989, 111, 2303-2305.
(16) Sigurdsson, S. T.; Eckstein, F. Nucleic Acids Res. 1996, 24, 3129-
3133.
(
(17) Sigurdsson, S. T.; Seeger, B.; Kutzke, U.; Eckstein, F. J. Org. Chem.
1996, 61, 3883-3884.
(
(18) Nitroxides have been shown to disproportionate in the presence of
HCl, which is generated during the preparation of 1. See: Rozantsev, E. G.
Free Nitroxyl Radicals; Plenum Press: New York, 1970; pp 102-105.
(
1
1
0.1021/ja005649i CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/26/2001