JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
Joralemon, C. J. Hawker, K. L. Wooley, Chem. Eur. J. 2006, 12,
6776–6786; (f) J. N. Hunt, K. E. Feldman, N. A. Lynd, J. Deek, L. M.
Campos, J. M. Spruell, B. M. Hernandez, E. J. Kramer, C. J.
Hawker, Adv. Mater. 2011, 23, 2327–2332; (g) M. A. Cole, C. N.
Bowman, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1749–1757.
CONCLUSIONS
In summary, we have identified selective thiol-yne monoad-
dition to phenylacetylene derivatives as a powerful synthetic
tool for the construction of macromolecular architectures, as
demonstrated by the efficient synthesis of both diblock and
graft copolymers. Advantages of this new approach include
facile synthesis of starting materials, equimolar stoichiome-
tries of building blocks, high overall yields and efficient cou-
pling. The high functional group tolerance of thiol-yne
chemistry makes this methodology applicable to the synthe-
sis of a wide range of functionalized polymers. In a wider
context, the use of phenylacetylene derivatives also repre-
sents a critical improvement over vinyl substrates tradition-
ally used in the radical thiol-ene reaction and offers wide
application in many areas of materials chemistry.
4 C. Barner-Kowollik, Du F. E. Prez, P. Espeel, C. J. Hawker, T.
Junkers, H. Schlaad, Van W. Camp, Angew. Chem. Int. Ed. 2011,
50, 60–62.
5 (a) N. B. Cramer, J. P. Scott, C. N. Bowman, Macromolecules
2002, 35, 5361–5366; (b) H. W. Ooi, K. S. Jack, A. K. Whittaker, H.
Peng, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 4626–4636.
6 (a) N. Gupta, B. F. Lin, L. M. Campos, M. D. Dimitriou, S. T.
Hikita, N. D. Treat, M. V. Tirrell, D. O. Clegg, E. J. Kramer, C. J.
Hawker, Nat. Chem. 2010, 2, 138–145; (b) L. M. Campos, I.
Meinel, R. G. Guino, M. Schierhorn, N. Gupta, G. D. Stucky, C.
J. Hawker, Adv. Mater. 2008, 20, 3728–3734.
7 K. L. Killops, L. M. Campos, C. J. Hawker, J. Am. Chem. Soc.
2008, 130, 5062–5064.
8 (a) C. E. Hoyle, A. B. Lowe, C. N. Bowman, Chem. Soc. Rev.
2010, 39, 1355–1341; (b) C. E. Hoyle, C. N. Bowman, Angew.
Chem. Int. Ed. 2010, 49, 1540–1546; (c) M. J. Kade, D. J. Burke,
C. J. Hawker, J. Polym. Sci. Part A: Polym. Chem. 2010, 48,
743–750.
ACKNOWLEDGMENTS
We thank Eric D. Pressly for helpful discussions. This work was
supported by the NSF MRSEC and RISE Programs under award
no. DMR-1121053 (J. K. Sprafke, D. Montarnal, R. Potzsch, D.
Miyajima, J. Hu, A. J. McGrath, K. M. Mattson, A. A. Latimer, and
C. J. Hawker). Partial support by the National Institutes of
€
9 (a) S. P. S. Koo, M. M. Stamenovic, R. A. Prasath, A. J. Inglis, Du
F. E. Prez, C. Barner-Kowollik, Van W. Camp, T. Junkers, J. Polym.
Sci. Part A: Polym. Chem. 2010, 48, 1699–1707; (b) P. Derboven, D.
R. D’hooge, M. M. Stamenovic, P. Espeel, G. B. Marin, Du F. E.
Prez, M. F. Reyniers, Macromolecules 2013, 46, 1732–1737.
Health as
a Program of Excellence in Nanotechnology
(HHSN268201000046C) (A. J. McGrath, A. A. Latimer, and C. J.
Hawker) is also gratefully acknowledged. J. M. Spruell thanks
the California NanoSystems Institute for an Elings Prize Fellow-
10 B. H. Northrop, R. N. Coffey, J. Am. Chem. Soc. 2012, 134,
13804–13811.
11 (a) A. B. Lowe, C. E. Hoyle, C. N. Bowman, J. Mater. Chem.
2010, 20, 4745–4751; (b) D. Konkolewicz, A. Gray-Weale, S.
Perrier, J. Am. Chem. Soc. 2009, 121, 18075–18080; (c) O.
€
ship. R. Potzsch thanks the Studienstiftung des deutschen
€
Volkes for a PhD scholarship and Forderverein des Leibniz-
€
Instituts fur Polymerforschung for a travel support. K. M. Matt-
€ €
Turunc¸, M. A. R. Meier, J. Polym. Sci. Part A: Polym. Chem.
son thanks the NSF Graduate Research Fellowship and ConvEne
IGERT Program (NSF-DGE 0801627) for funding. The MRL
Shared Experimental Facilities are supported by the MRSEC
Program of the National Science Foundation under award NSF
2012, 50, 1689–1695; (d) Y. Shen, Y. Ma, Z. Li, J. Polym. Sci.
Part A: Polym. Chem. 2013, 51, 708–715; (e) N. Ren, X. Huang,
X. Huang, Y. Qian, C. Wang, Z. Xu, J. Polym. Sci. Part A:
Polym. Chem. 2012, 50, 3149–3157.
12 (a) S. Ruhemann, H. E. Stapelton, J. Chem. Soc. Trans. 1900, 77,
1179–1185; (b) S. Ruhemann, J. Chem. Soc. Trans. 1905, 87, 461–468;
(c) E. P. Kohler, H. Potter, J. Am. Chem. Soc. 1935, 57, 1316–1318; (d)
A. A. Oswald, K. Griesbaum, B. E. Hudson, J. M. Bregman, J. Am.
Chem. Soc. 1964, 86, 2877–2881; (e) K. Griesbaum, Angew.
DMR-1121053;
a member of the NSF-funded Materials
Research Facilities Network.
REFERENCES AND NOTES
€
Chem. Int. Ed. Engl. 1970, 9, 273–276; (f) R. Potzsch, H. Komber,
1 F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32–39.
B. C. Stahl, C. J. Hawker, B. I. Voit, Macromol. Rapid Commun.
€
2 (a) J. A. Opsteen, J. C. M. van Hest, Chem. Commun. 2005,
57–62; (b) A. J. Inglis, S. Sinnwell, M. H. Stenzel, C. Barner-
Kowollik, Angew. Chem. Int. Ed. 2009, 48, 2411–2418; (c) E. D.
Pressly, R. J. Amir, C. J. Hawker, J. Polym. Sci. Part A: Polym.
Chem. 2011, 49, 814–819; (d) C. F. Hansell, P. Espeel, M. M.
Stamenovic, I. A. Barker, A. P. Dove, Du F. E. Prez, R. K. O’Reilly, J.
Am. Chem. Soc. 2011, 133, 13828–13833; (e) M. A. Tasdelen, G.
Yilmaz, B. Iskin, Y. Yagci, Macromolecules 2012, 45, 56–61; (f) K.
K. Oehlenschlaeger, J. O. Mueller, N. B. Heine, M. Glassner, M. K.
Guimard, G. Delaittre, F. G. Schmidt, C. Barner-Kowollik, Angew.
Chem. Int. Ed. 2013, 52, 762–768; (g) V. X. Truong, A. P. Dove,
Angew. Chem. Int. Ed. 2013, 52, 4132. (h) C. J. Hawker, V. V. Fokin,
M. G. Finn, K. B. Sharpless, Aust. J. Chem. 2007, 60, 381–383.
2013, 34, 1172–1178; (g) R. Potzsch, B. C. Stahl, H. Komber, C. J.
Hawker, B. I. Voit, Polym. Chem. 2014, 5, 2911–2921.
13 P. Lundberg, M. V. Walter, M. I. Montanez, D. Hult, A. Hult,
A. Nystrom, M. Malkoch, Polym. Chem. 2011, 2, 394–398.
€
14 S. Fleischmann, H. Komber, B. Voit, Macromolecules 2008,
41, 5255–5260.
15 J. Heo, T. Kang, S. G. Jang, D. S. Hwang, J. M. Spruell, K.
L. Killops, J. H. Waite, C. J. Hawker, J. Am. Chem. Soc. 2012,
134, 20139–20145.
16 The dramatic change in the cis/trans ratios of the sulfide
monoadducts may be explained by formation of the thermody-
namic product (trans) at high reactant and initiator concentra-
tions and the kinetic product (cis) at lower concentrations, as
observed for Ynamides: B. Banerjee, D. N. Litvinov, J. Kang, J.
D. Bettale, S. L. Castle, Org. Lett. 2010, 12, 2650–2652.
3 (a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2001, 40, 2004–2009; (b) R. K. Iha, K. L. Wooley, A. M.
€
Nystrom, D. J. Burke, M. J. Kade, C. J. Hawker, Chem. Rev.
17 H. Gao, K. Matyjaszewski, J. Am. Chem. Soc. 2007, 129, 6633–
2009, 109, 5620–5686; (c) Kempe, K.; A. Krieg, C. R. Becer, U. S.
Schubert, Chem. Soc. Rev. 2012, 41, 176–198; (d) A. S.
Goldmann, M. Glassner, A. J. Inglis, C. Barner-Kowollik, Macro-
mol. Rapid Commun. 2013, 34, 810–815; (e) R. K. O’Reilly, M. J.
6639.
18 F. A. Leibfarth, C. J. Hawker, J. Polym. Sci. Part A: Polym.
Chem., 2013, 51, 3769–3782.
8
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 00, 000–000