28
R. N. Bhattacharya et al. / Tetrahedron Letters 52 (2011) 26–28
Table 3
References and notes
Preparation of 4-arylhexahydro-1H-pyrano[2,3-d]pyrimidin-2(8aH)-onesa,b
1. (a) Balme, G.; Bosshart; Monteiro, E. N. Eur. J. Org. Chem. 2003, 4101–4111; (b)
Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51–80; (c) Orru, R. V. A.; Greef, M.
Synthesis 2003, 1471–1499; (d) Zhu, J. Eur. J. Org. Chem. 2003, 1133–1144; (e)
Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321–
3329; (f) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 112, 3168–3210; (g)
Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551–564; (h)
Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1694; (i) Tietze, L. F.
Chem. Rev. 1996, 96, 115–136; (j) Tietze, L. F.; Haunert, F. In Stimulating
Concepts in Chemistry; Vogtle, F., Stoddart, J. F., Shibasaki, M., Eds.; Wiley:
VCH:Weinheim, 2000; pp 39–64.
R
H
SbCl3
(10 mol %)
O
NH
RCHO
+
+
Ethanol,
NH2
H2N
O
O
N
O
Reflux (5 h)
H
H
4a-g
Entry
R
Product
Yieldc (%)
2. (a) Padwa, A. In Progress in Heterocyclic Chemistry; Suschitzky, H., Scriven, E. F.
V., Eds.; Pergamon: Oxford, 1994; Vol. 6, pp 36–55; (b) Butler, M. S. J. Nat. Prod.
2004, 67, 2141–2153.
3. (a) Atwal, K. S.; Rovnyak, G. C.; O’Reilly, B. C.; Schwartz, J. J. Org. Chem. 1989, 54,
5898–5907; (b) Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron
1997, 53, 2803–2816; (c) Zhu, Y.; Huang, S.; Pan, Y. Eur. J. Org. Chem. 2005,
2354–2367.
4. The Pyrimidines; Fenn, D., Ed.; Wiley: New York, NY, 1994.
5. Ghorab, M. M.; Hassan, A. Y. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 141,
251.
1
2
3
4
5
6
7
Phenyl
4a
4b
4c
4d
4e
4f
88
88
91
94
93
85
82
40-Methylphenyl
40-Chlorophenyl
40-Methoxyphenyl
40-Nitrophenyl
40-Hydroxy-30methoxyphenyl
E-Styryl
4g
a
Reaction conditions: urea (1.2 mmol), aromatic aldehydes (1.0 mmol),
6. Coates, W. J. Eur. Patent 351058, 1990.
SbCl3(0.1 mmol), 3,4-dihydro-2H-pyran (1.5 mmol).
b
All compounds were characterised by 1HNMR, 13CNMR, HRMS, IR.
7. (a) Fosseheim, R.; Svarteng, K.; Mostad, A.; Romming, C.; Shefter, E.; Triggle, D.
J. J. Med. Chem. 1982, 25, 126–131; (b) Levitt, G. U.S. Patent 4,339,267, 1982.; (c)
Love, B.; Goodman, M. M.; Snader, K. M.; Tedeschi, R.; Macko, E. J. Med. Chem.
1974, 17, 965.
8. (a) Broom, A. D.; Shim, J. L.; Anderson, G. L. J. Org. Chem. 1976, 41, 1095–1099;
(b) Grivsky, E. M.; Lee, S.; Sigel, C. W.; Duch, D. S.; Nichol, C. A. J. Med. Chem.
1980, 23, 327–329.
9. Davoll, J.; Clarke, J.; Elslager, E. F. J. Med. Chem. 1972, 15, 837–839.
10. Furuya, S.; Ohtaki, T. Eur. Patent 608565, 1994.
11. Kitamura, N.; Onishi, A. Eur. Patent 163599, 1984.
c
Yield refers to pure and isolated yield.
excellent diastereoselectivity. In all the cases, only a single diaste-
reomer was obtained.
Thus SbCl3 has been proved to be a superior and mild Lewis acid
catalyst in terms of economy, handling, reaction time and yield
compared to the earlier literature.12,13 It also showed tolerance to
free phenolic hydroxyl group as in 4f. The reaction was also
12. Zhu, Y.; Huang, S.; Wan, J.; Yan, L.; Pan, Y.; Wu, A. Org. Lett. 2006, 8, 2599–2602.
and the references cited therein.
13. Pandey, J.; Anand, N.; Tripathi, R. P. Tetrahedron 2009, 65, 9350–9356. and the
references cited therein.
smooth employing an a,b unsaturated aldehyde with no side reac-
tions to yield 4g.
14. (a) Russowsky, D.; Canto, R. F. S.; Sanches, S. A. A.; D’Oca, M. G. M.; Fátima,
Â.; Pilli, R. A.; Kohn, L. K.; Antônio, M. A.; Carvalho, J. E. Bioorg. Chem. 2006,
34, 173–182; (b) Cepanec, I.; Litvic´, M.; Filipan-Litvic´, M.; Grüngold, I.
Tetrahedron 2007, 63, 11822–11827; (c) Maiti, G.; Kundu, P. Tetrahedron Lett.
2006, 47, 5733–5736; (d) Maiti, G.; Kundu, P. Synth. Commun. 2007, 37,
2309–2316; (e) Bhattacharya, R. N.; Kundu, P.; Maiti, G. Synth. Commun.
2010, 40, 476–481.
In summary, we have developed a mild and efficient reaction
between urea, aldehydes and cyclic enol ethers leading to 4-
arylhexahydrofuro[2,3-d]pyrimidin-2(3H)-ones and homologous
4-arylhexahydro-1H-pyrano[2,3-d]pyrimidin-2(8aH)-ones using
catalytic SbCl3 with high atom economy. The notable advantages
of this method are operational simplicity, use of inexpensive SbCl3
catalyst, mild reaction conditions, ease of isolation of products and
non-toxic ethanol as solvent. Due to easy availability of the starting
materials, the reaction might prove to be very useful for building
up pyrimidine scaffolds. Further studies in this area to explore
the synthetic applications of the reaction are being carried out in
our laboratory.
15. Representative
experimental
procedure
for
the
synthesis
of
4-
arylhexahydrofuro[2,3-d]pyrimidin-2(3H)-one (3a): To
a
solution of
benzaldehyde (106 mg, 1 mmol) in 3 ml ethanol, urea (72 mg, 1.2 mmol) was
added and stirred at room temperature for 15 min. To this stirred solution,
SbCl3 (22 mg, 0.1 mmol) was added followed by addition of 2,3-dihydrofuran
(105 mg, 1.5 mmol) and was refluxed for 4 h fitted with a reflux condenser and
a calcium chloride guard tube. The progress of the reaction was followed by
TLC. After completion of the reaction, the volatiles were removed under
reduced pressure and the product was purified by column chromatography
over silica gel (60–120) eluting with 50% ethyl acetate in hexane to afford 3a
(200 mg, 0.92 mmol, 92%) as a white crystalline solid; mp 200 °C. 1H NMR
Acknowledgments
(300 MHz, DMSO-d6):
d 1.62–1.67 (m, 1H), 1.87–1.99 (m, 1H), 2.28 (t,
J = 3.8 Hz, 1H), 3.65 (dd, J = 8.5, 13.9 Hz, 1H), 3.91 (dd, J = 8.0, 15.0 Hz, 1H),
4.10 (d, J = 7.8 Hz, 1H), 4.80 (t, J = 3.9 Hz, 1H), 6.80 (s, 1H), 7.18 (s,1H), 7.25–
7.40 (m, 5H); 13C NMR (75 MHz, DMSO-d6): d 27.5, 41.6, 55.0, 63.9, 83.4, 127.7,
128.0, 128.9, 142.1, 155.8. HRMS: calcd for C12H14N2NaO2 241.0953; found
241.0956.
We express our sincere thanks to Mr. Sudipta Chatterjee, Assis-
tant Professor in Chemistry, Serampore College, Serampore, West
Bengal, India for crystallographic analysis. We also thank the
Department of Chemistry, Jadavpur University for financial and
infrastructural support from UGC-CAS and PURSE-DST programme.
16. This protocol was followed for all reactions listed in Table 2 and Table 3 except
otherwise stated with reaction times listed thereof.
17. Selected X-ray crystallographic data for compound 3b:
rectangular, a = 7.1060(14) Å, b = 13.373(3) Å, c = 25.901(5) Å,
b = 90.00°,
= 90.00°, V = 2461.3(9) Å3. CCDC-778922 contains the
C
12H13BrN2O2,
a
= 90.00°,
Supplementary data
c
Supplementary crystallographic data for the structure reported in this letter.
These data can be obtained free of charge from The Cambridge Crystallographic
Supplementary data associated with this article can be found, in