3916
K. Y. Lee et al. / Tetrahedron Letters 47 (2006) 3913–3917
benzyl group and the amino group were positioned in
opposite directions and this could be explained by the
proposed reaction mechanism.
1355; (c) Lee, M. J.; Park, D. Y.; Lee, K. Y.; Kim, J. N.
Tetrahedron Lett. 2006, 47, 1833; (d) Park, D. Y.; Lee, M.
J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799;
(
e) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron
Lett. 2005, 46, 4859; (f) Lee, K. Y.; Gowrisankar, S.; Kim,
J. N. Tetrahedron Lett. 2005, 46, 5387; (g) Lee, C. G.; Lee,
K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493.
. For the introduction of nucleophiles at the secondary
position of Baylis–Hillman adducts by using the DABCO
salt concept, see: (a) Kim, J. N.; Lee, H. J.; Lee, K. Y.;
Gong, J. H. Synlett 2000, 173; (b) Gong, J. H.; Kim, H.
R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002,
Without TFA the reaction showed more complex nature
although we could observe the formation of 4a in small
amounts on TLC. Actually, without TFA, dark and
3
4
sticky solution phase (H SO , most of the starting mate-
2
4
rial, and products were dissolved in this phase) was sep-
arated out from the upper benzene phase. Such phase
separation could make the reaction more complex.
When we used AcOH or formic acid instead of TFA,
we could obtain 4a although in low yields (20–25%) than
the standard conditions using TFA. From these obser-
vations we tentatively concluded that the use of TFA
improved the miscibility of the reaction mixtures and
make the reaction cleaner.
2
3, 789; (c) Kim, J. M.; Lee, K. Y.; Kim, J. N. Bull. Korean
Chem. Soc. 2004, 25, 328; (d) Chung, Y. M.; Gong, J. H.;
Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023.
. For the synthesis and applications of unusual a-amino acid
derivatives, see: (a) Kotha, S. Acc. Chem. Res. 2003, 36, 342;
(
1
b) Mendel, D.; Ellman, J.; Schultz, P. G. J. Am. Chem. Soc.
993, 115, 4359; (c) Ellis, T. K.; Hochla, V. M.; Solo-
shonok, V. A. J. Org. Chem. 2003, 68, 4973; (d) Belokon, Y.
N.; Bespalova, N. B.; Churkina, T. D.; Cisarova, I.;
Ezernitskaya, M. G.; Harutyunyan, S. R.; Hrdina, R.;
Kagan, H. B.; Kocovsky, P.; Kochetkov, K. A.; Larionov,
O. V.; Lyssenko, K. A.; North, M.; Polasek, M.; Pere-
gudov, A. S.; Prisyazhnyuk, V. V.; Vyskocil, S. J. Am.
Chem. Soc. 2003, 125, 12860; (e) Jorgensen, M. R.; Olsen,
C. A.; Mellor, I. R.; Usherwood, P. N. R.; Witt, M.;
Franzyk, H.; Jaroszewski, J. W. J. Med. Chem. 2005, 48, 56.
. For the only example of cyclic a-oxyamino acid derivative,
see: (a) Harada, K.; Kaji, E.; Takahashi, K.; Zen, S. Chem.
Pharm. Bull. 1994, 42, 1562; (b) Kaji, E.; Takahashi, K.;
Kitazawa, M.; Zen, S. Chem. Pharm. Bull. 1987, 35, 3062;
(c) Ueda, S.; Naruto, S.; Yoshida, T.; Sawayama, T.; Uno,
H. J. Chem. Soc., Chem. Commun. 1985, 218; (d) Ueda, S.;
Naruto, S.; Yoshida, T.; Sawayama, T.; Uno, H. J. Chem.
Soc., Perkin Trans. 1 1988, 1013.
Encouraged by the results we examined the reaction of
starting materials 3a–d and arene nucleophiles including
benzene, p-xylene, and 1,4-dimethoxybenzene. We
obtained desired compounds 4b–g similarly, although
the yields were moderate (Table 1). The yields were
better when we used 1.0 equiv of H SO for the cases
2
4
of 3c and 3d. For 1,4-dimethoxybenzene (solid) we used
only 2.0 equiv of arene nucleophile for the facility of
separation. In order to make the structures of 4a–g more
clear we solved another X-ray crystal structure with 4e
5
6
8
,10
(
Fig. 2).
Based on the X-ray data of 4e it was clear
that the arene moiety at the benzylic site of 4a–g was
derived from the external nucleophile, arene solvent.
In summary, we disclosed the first synthesis of unusual
amino acid esters, 2-amino-2,3-dihydrobenzofuran deriv-
atives, starting from the Baylis–Hillman adducts. In the
reaction, unusual oxygen atom transfer process was the
key step. Further studies on the reaction mechanism
and synthetic applications are actively underway.
. The reactions of nitro compounds including ethyl nitroac-
etate under strongly acidic conditions, see: (a) Ohwada, T.;
Yamagata, N.; Shudo, K. J. Am. Chem. Soc. 1991, 113,
1
364; (b) Coustard, J.-M.; Jacquesy, J.-C.; Violeau, B.
Tetrahedron Lett. 1991, 32, 3075; (c) Coustard, J.-M.;
Jacquesy, J.-C.; Violeau, B. Tetrahedron Lett. 1992, 33,
8
085; (d) Sartori, G.; Bigi, F.; Maggi, R.; Tomasini, F.
Tetrahedron Lett. 1994, 35, 2393; (e) Berrier, C.; Brahmi, R.;
Carreyre, H.; Coustard, J.-M.; Jacquesy, J.-C. Tetrahedron
Lett. 1989, 30, 5763; (f) Ohta, T.; Shudo, K.; Okamoto, T.
Tetrahedron Lett. 1984, 25, 325; (g) Miyake, S.; Sasaki, A.;
Ohta, T.; Shudo, K. Tetrahedron Lett. 1985, 26, 5815.
. For the examples of oxygen atom transfer, see: (a)
Nakamura, S.; Uchiyama, M.; Ohwada, T. J. Am. Chem.
Soc. 2003, 125, 5282; (b) Collado, D.; Perez-Inestrosa, E.;
Suau, R. J. Org. Chem. 2003, 68, 3574; (c) Li, X.;
Incarvito, C. D.; Vogel, T.; Crabtree, R. H. Organomet-
allics 2005, 24, 3066; (d) Terrier, F.; Beaufour, M.; Halle,
J.-C.; Cherton, J.-C.; Buncel, E. Tetrahedron Lett. 2001,
Acknowledgments
This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government
MOEHRD, KRF-2005-041-C00248). Spectroscopic
data was obtained from the Basic Science Institute,
Gwangju branch.
7
(
References and notes
4
2, 4499; (e) Kaplan, L. A.; Angres, I. A.; Shipp, K. G. J.
1
. General review article of B–H reaction, (a) Basavaiah, D.;
Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811;
Org. Chem. 1977, 42, 1262; (f) Madhusudanan, K. P.;
Bajpai, L. K.; Bhaduri, A. P. Rapid Commun. Mass
Spectrom. 1997, 11, 1263; (g) Wakamatsu, K.; Kouda, M.;
Shimaoka, K.; Yamada, H. Tetrahedron Lett. 2004, 45,
6395; (h) Tovrog, B. S.; Mares, F.; Diamond, S. E. J. Am.
Chem. Soc. 1980, 102, 6616; (i) Topiwala, U. P.; Whiting,
D. A. J. Chem. Soc., Chem. Commun. 1994, 2443.
(
b) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.;
John Wiley & Sons: New York, 1997; Vol. 51, pp 201–350;
c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron
996, 52, 8001; (d) Kim, J. N.; Lee, K. Y. Curr. Org.
(
1
Chem. 2002, 6, 627; (e) Lee, K. Y.; Gowrisankar, S.; Kim,
J. N. Bull. Korean Chem. Soc. 2005, 26, 1481, and further
references cited therein.
8. Spectroscopic data of 4a and 4e are as follows.
Compound 4a: 55%; white solid, mp 120–121 ꢁC; IR
À1
1
2
. For our recent chemical transformations of Baylis–Hillman
adducts, see: (a) Lee, K. Y.; Kim, S. C.; Kim, J. N.
Tetrahedron Lett. 2006, 47, 977; (b) Lee, M. J.; Lee, K. Y.;
Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47,
(KBr) 3417, 3332, 1751, 1716, 1200 cm
;
H NMR
(CDCl , 300 MHz) d 1.24 (t, J = 7.2 Hz, 3H), 2.85 (br s,
3
2H), 3.63 (s, 3H), 4.06–4.15 (m, 1H), 4.18 (s, 2H), 4.31–
4.42 (m, 1H), 6.08–6.87 (m, 2H), 7.18–7.30 (m, 6H), 7.38