Open metal site Cu (BTC) microbelts for sulfide oxidation
3
2
Acknowledgments
The authors thank Prof. M. R. Yaftian and his group for the chemical
analysis of the synthesized compounds (Zanjan University). The
authors are grateful for financial support from the University of
Maragheh.
References
[
[
[
[
1] J. Reboul, S. Furukawa, N. Horike, M. Tsotsalas, K. Hirai, H. Uehara,
M. Kondo, N. Louvain, O. Sakata, S. Kitagawa, Nat. Mater. 2012, 11, 717.
2] a) H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276. b)
S. Rostamnia, E. Doustkhah, RSC Adv. 2014, 4, 28238.
3] a) J. L. C. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mater. 2004, 73, 3. b)
M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310.
4] a) J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. van Klink,
F. Kapteijn, J. Catal. 2009, 261, 75. b) S. Couck, J. F. M. Denayer,
G. V. Baron, T. Remy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2009,
Scheme 2. Feasible mechanisms for sulfide oxidation using Cu
3 2
(BTC)
microbelt catalyst.
131, 6326. c) P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon,
F. Kapteijn, Chem. Mater. 2011, 23, 2565.
[
5] a) A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Catal. Sci. Technol.
2011, 1, 856. b) A. Dhakshinamoorthy, M. Alvaro, H. Garcia, ACS
Catal. 2011, 1, 48.
of Baiker and co-workers of generation of A by addition of CuBTC
[12]
and H
2
O
2
.
Note that both copper(II) peroxo complex A and H
2
[
Cu (O CC H CO ) (O )]ÁH O are active for oxidation of organic
2
2
6
10
11,12]
2 2
2
2
[6] a) S. Rostamnia, H. Xin, N. Nouruzi, Micropor. Mesopor. Mater. 2013, 179,
99. b) S. Rostamnia, A. Morsali, RSC Adv. 2014, 4, 10514. c) S. Rostamnia,
A. Morsali, Inorg. Chim. Acta 2014, 411, 113. d) S. Rostamnia, H. Xin,
Appl. Organometal. Chem. 2014, 28, 359. e) S. Rostamnia, Z. Karimi,
Inorg. Chim. Acta 2015, 428, 133.
[7] a) S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen,
I. D. Williams, Science 1999, 283, 1148. b) C. Prestipino, L. Regli,
J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina,
P. L. Solari, K. O. Kongshaug, S. Bordiga, Chem. Mater. 2006, 18,
[
molecules.
In order to gain some insight into whether the
reaction proceeds via peroxo copper intermediate A or B mecha-
nism, we dispersed our Cu (BTC) microbelts (Scheme 2, test tube
3
2
1
) in acetonitrile and added H O . After 24 h the colour changes
2 2
to green (Scheme 2, test tube 3) and also the pH of the mixture
changes from neutral to acidic (Scheme 2, litmus paper test) which
support our assumed mechanism as indicated in Scheme 2.
1337. c) A. R. Abbasi, M. Rizvandi, A. Azadbakht, S. Rostamnia,
J. Colloid Interface, Sci. 2016, 471, 112.
[
8] a) M. Carmen Carreno, Chem. Rev. 1995, 95, 1717. b) S. Rostamnia,
E. Doustkhah, K. Bahrami, S. Amini, J. Mol. Liq. 2015, 207, 334.
9] a) S. L. Serna, L. L. Núñez, J. Flores, R. López-Simeon, H. I. Beltrán, RSC
Adv. 2013, 3, 10962. b) Q. Luoa, X. Songa, M. Jia, S.-E. Parkb, C. Hao,
Y. Lia, Appl. Catal. A 2014, 478, 81. c) K. Huang, Y. Xu, L. Wang, D. Wu,
RSC Adv. 2015, 5, 32795.
Conclusions
[
We have synthesized a hybrid material with microbelt morphology
based on the structure of the MOF Cu (BTC) . This open metal site
MOF shows remarkable catalytic activity in the green and selective
sulfide oxidation of aromatic and aliphatic sulfides. It is believed
that the hybrid nature of the MOF affords the efficient mass transfer
3
2
[
[
10] B. Zhang, J. Zhang, C. Liu, X. Sang, L. Peng, X. Ma, T. Wu, B. Han, G. Yang,
RSC Adv. 2015, 5, 37691.
11] a) C. N. Kato, M. Hasegawa, T. Sato, A. Yoshizawa, T. Inoue, W. Mori,
J. Catal. 2005, 230, 226. b) C. N. Kato, W. Mori, C. R. Chim. 2007, 10, 284.
3
of starting substrates to the active sites within or on the Cu (BTC)2
microbelts.
[12] S. Marx, W. Kleist, A. Baiker, J. Catal. 2011, 281, 76.
Appl. Organometal. Chem. (2016)
Copyright © 2016 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc