J Incl Phenom Macrocycl Chem (2015) 81:57–69
69
Recognition of biotin and adenine derivatives by a new synthetic
host. J. Am. Chem. Soc. 111, 8055–8057 (1989)
5. Goswami, S., Dey, S.: Directed molecular recognition: design
and synthesis of neutral receptors for biotin to bind both its
functional groups. J. Org. Chem. 71, 7280–7287 (2006)
20. Mazik, M., Sicking, W.: Molecular recognition of carbohydrates
by artificial receptors: systematic studies towards recognition
motifs for carbohydrates. Chem. Eur. J. 7, 664–670 (2001)
21. Mazik, M., Cavga, H.: An acyclic aminonaphthyridine-based
receptor for carbohydrate recognition: binding studies in com-
petitive solvents. Eur. J. Org. Chem. 3633–3638 (2007)
22. Brown, E.V.: 1,8-Naphthyridines. I. Derivatives of 2-and
4-methyl-1,8-naphthyridines. J. Org. Chem. 30, 1607–1610 (1965)
23. Goswami, S., Mukherjee, R., Mukherjee, R., Jana, S., Maity,
A.C., Adak, A.K.: Simple and efficient synthesis of 2,7-difunc-
tionalized-1,8-naphthyridines. Molecules 10, 929–936 (2005)
24. Berger, S., Braun, S.: 200 and More NMR Experiments. Wiley,
Weinheim (2004)
25. Job, P.: Formation and stability of inorganic complexes in solu-
tion. Ann. Chim. App. 9, 113–203 (1928)
26. MacCarthy, P., Hill, Z.D.: Novel approach to Job’s method.
J. Chem. Ed. 63, 162–167 (1986)
27. Renny, J.S., Tomasevich, L.L., Tallmadge, E.H., Collum, D.B.:
Method of continuous variations: Applications of Job plots to the
study of molecular associations in organometallic chemistry.
Angew. Chem. Int. Ed. 52, 2–18 (2013)
28. Thordarson, P.: Determining association constants from titration
experiments in supramolecular chemistry. Chem. Soc. Rev. 40,
1305–1323 (2011)
´
6. Claramunt, R.M., Herranz, F., Santa Marıa, M.D., Pinilla, E.,
Torres, M.R., Elguero, J.: Molecular recognition of biotin, bar-
bital and tolbutamide with new synthetic receptors. Tetrahedron
61, 5089–5100 (2005)
7. Ghosh, K., Sen, T.: A benzothiazole-based simple receptor in
fluorescence sensing of biotin ester and urea. Tetrahedron Lett.
50, 4096–4100 (2009)
8. Murray, T.J., Zimmerman, S.C.: 7- Amido-1,8-naphthyridines as
hydrogen bonding units for the complexation of guanine deriv-
atives: the role of 2-alkoxyl groups in decreasing binding affinity.
Tetrahedron Lett. 42, 7627–7630 (1995)
9. Mayer, M.F., Nakashima, S., Zimmerman, S.C.: Synthesis of a
soluble ureido-naphthyridine oligomer that self-associates via
eight contiguous hydrogen bonds. Org. Lett. 7, 3005–3008 (2005)
10. Hamilton, A.D., Pant, N.: Nucleotide base recognition: ditopic
binding of guanine to a macrocyclic receptor containing naph-
thyridine and naphthalene units. Chem. Commun. 12, 765–766
(1988)
´
11. Claramunt, R.M., Herranz, F., Santa Marıa, M.D., Jaime, C., de
Federico, M., Elguero, J.: Towards the design of host–guest
complexes: biotin and urea derivatives versus artificial receptors.
Biosens. Bioelectron. 20, 1242–1249 (2004)
29. Hynes, M.J.: EQNMR: a computer program for the calculation of
stability constants from nuclear magnetic resonance chemical
shift data. J. Chem. Soc. Dalton Trans. 311–312 (1993)
30. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K.,
Puschmann, H.: OLEX2: a complete structure solution, refine-
ment and analysis program. J. Appl. Cryst. 42, 339–341 (2009)
31. Sheldrick, G.M.: A short history of SHELX. Acta Cryst. A64,
112–122 (2008)
32. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R.,
Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W.C.:
MacroModel-an integrated software system for modeling organic
and bioorganic molecules using molecular mechanics. J. Comp.
Chem. 11, 440–467 (1990)
´
12. Herranz, F., Santa Marıa, M.D., Claramunt, R.M.: Molecular
recognition: improved binding of biotin derivatives with synthetic
receptors. J. Org. Chem. 71, 2944–2951 (2006)
´
´
´
13. Santa Marıa, D., Farran, M.A., Garcıa, M.A., Pinilla, E., Torres,
M.R., Elguero, J., Claramunt, R.M.: Synthetic hosts for molecular
recognition of ureas. J. Org. Chem. 76, 6780–6788 (2011)
14. Ghosh, K., Sen, T.: Naphthyridine-based receptors for flurometric
detection of urea and biotin. J. Incl. Phenom. Macrocycl. Chem.
67, 271–280 (2010)
15. Petitjean, A., Cuccia, L.A., Lehn, J.M., Nierengarten, H., Sch-
mutz, M.: Cation-promoted hierarchical formation of supramo-
lecular assemblies of self-organized helical molecular
components. Angew. Chem. Int. Ed. 41, 1195–1198 (2002)
16. Katz, J.L., Geller, B.J., Foster, P.D.: Oxacalixarenes and oxa-
33. Chang, G., Guida, W.C., Still, W.C.: An internal-coordinate
Monte Carlo method for searching conformational space. J. Am.
Chem. Soc. 111, 4379–4386 (1989)
34. Polak, E.: Computational methods in optimization. Academic
Press, New York (1971)
cyclophanes containing 1,8-naphthyridines:
a new class of
molecular tweezers with concave-surface functionality. Chem.
Comm. 10, 1026–1028 (2007)
17. Petitjean, A., Cuccia, L.A., Schmutz, M., Lehn, J.M.: Naph-
thyridine-based helical foldamers and macrocycles: synthesis,
cation binding, and supramolecular assemblies. J. Org. Chem. 73,
2481–2495 (2008)
18. Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hir-
schberg, J.H.K.K., Lange, R.F.M., Lowe, J.K.L., Meijer, E.W.:
Reversible polymers formed from self-complementary monomers
using quadruple hydrogen bonding. Science 278, 1601–1604
(1997)
19. Park, T., Zimmerman, S.C.: Formation of a miscible supramo-
lecular polymer blend through self-assembly mediated by a
quadruply hydrogen-bonded heterocomplex. J. Am. Chem. Soc.
128, 11582–11590 (2006)
35. Brodlie, K.W. In: The state of the art in numerical analysis.
Jacobs, D.A.H. (ed.). Academic Press, London (1977)
36. Weiner, P.K., Kollmann, P.A.: AMBER: assisted model building
with energy refinement. A general program for modeling mole-
cules and their interactions. J. Comput. Chem. 2, 287–303 (1981)
37. Carver, F.J., Hunter, C.A., Shannon, R.J.: Directed macrocycli-
zation reactions. J. Chem. Soc. Chem. Comm. 10, 1277–1280
(1994)
38. Cohen, N.C. (ed.): Guidebook on molecular modeling in drug
design. Academic Press Ltd, London (1996)
39. Lewars, E.G.: Computational chemistry. Introduction to the the-
ory and applications of molecular and quantum mechanics.
Springer, New York (2011)
123