Organometallics
Article
istry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys.
(34) Johnson, M. T.; Johansson, R.; Kondrashov, M. V.; Steyl, G.;
Ahlquist, M. r. S. G.; Roodt, A.; Wendt, O. F. Mechanisms of the CO2
Insertion into (PCP) Palladium Allyl and Methyl σ-Bonds. A Kinetic
and Computational Study. Organometallics 2010, 29, 3521−3529.
(35) Ryu, H.; Park, J.; Kim, H. K.; Park, J. Y.; Kim, S.-T.; Baik, M.-H.
Pitfalls in Computational Modeling of Chemical Reactions and How
To Avoid Them. Organometallics 2018, 37, 3228−3239.
2
(
017, 19, 32184−32215.
16) Mardirossian, N.; Head-Gordon, M. Thirty years of density
functional theory in computational chemistry: an overview and
extensive assessment of 200 density functionals. Mol. Phys. 2017, 115,
2
(
315−2372.
17) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
18) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
(36) Dang, L.; Lin, Z.; Marder, T. B. DFT Studies on the
(
Carboxylation of Arylboronate Esters with CO Catalyzed by
2
Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)].
Copper(I) Complexes. Organometallics 2010, 29, 917−927.
(37) Lv, X.; Wu, Y.-B.; Lu, G. Computational exploration of ligand
Phys. Rev. Lett. 1997, 78, 1396−1396.
(
19) Becke, A. D. Density-functional thermochemistry. III. The role
effects in copper-catalyzed boracarboxylation of styrene with CO .
2
of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
Catal. Sci. Technol. 2017, 7, 5049−5054.
(
20) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping
(38) The imaginary frequency is inversely proportional to the square
root of the reduced mass of the vibrating atoms. If many atoms are
displaced during the TS, the imaginary frequency will necessarily be
small. The obtained imaginary frequencies for TS2b‑3b for sub1 and
function in dispersion corrected density functional theory. J. Comput.
Chem. 2011, 32, 1456−65.
(
21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
−
1
−1
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,
G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini,
F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.;
Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.;
Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov,
V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.
Gaussian 16 Rev. B.01; Gaussian, Inc.: Wallingford, CT, 2016.
sub2 are respectively 19i and 16i cm for ωB97XD, 25i cm and 23i
−
1
−1
cm for B3LYP-D3, and 35i and 13i cm for PBE-D3BJ.
39) Husch, T.; Freitag, L.; Reiher, M. Calculation of Ligand
(
Dissociation Energies in Large Transition-Metal Complexes. J. Chem.
Theory Comput. 2018, 14, 2456−2468.
(
22) Riplinger, C.; Neese, F. An efficient and near linear scaling pair
natural orbital based local coupled cluster method. J. Chem. Phys.
013, 138, 034106.
23) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural
2
(
triple excitations in local coupled cluster calculations with pair natural
orbitals. J. Chem. Phys. 2013, 139, 134101.
(
24) Sparta, M.; Neese, F. Chemical applications carried out by local
pair natural orbital based coupled-cluster methods. Chem. Soc. Rev.
014, 43, 5032−41.
25) Liakos, D. G.; Sparta, M.; Kesharwani, M. K.; Martin, J. M. L.;
2
(
Neese, F. Exploring the Accuracy Limits of Local Pair Natural Orbital
Coupled-Cluster Theory. J. Chem. Theory Comput. 2015, 11, 1525−
1
(
539.
26) Minenkov, Y.; Chermak, E.; Cavallo, L. Accuracy of DLPNO-
CCSD(T) method for noncovalent bond dissociation enthalpies from
coinage metal cation complexes. J. Chem. Theory Comput. 2015, 11,
4
(
664−76.
27) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient,
approximate and parallel Hartree−Fock and hybrid DFT calculations.
A ‘chain-of-spheres’ algorithm for the Hartree−Fock exchange. Chem.
Phys. 2009, 356, 98−109.
(
28) Neese, F. The ORCA program system. WIREs Comput. Mol. Sci.
2
(
012, 2, 73−78.
29) Hopmann, K. H. How Accurate is DFT for Iridium-Mediated
Chemistry? Organometallics 2016, 35, 3795−3807.
30) Ostapowicz, T. G.; Holscher, M.; Leitner, W. Catalytic
Hydrocarboxylation of Olefins with CO and H - a DFT Computa-
(
̈
2
2
tional Analysis. Eur. J. Inorg. Chem. 2012, 2012, 5632−5641.
(
31) Ostapowicz, T. G.; Holscher, M.; Leitner, W. CO insertion
̈
2
into metal-carbon bonds: a computational study of Rh(I) pincer
complexes. Chem. - Eur. J. 2011, 17, 10329−38.
(
32) Schmeier, T. J.; Hazari, N.; Incarvito, C. D.; Raskatov, J. A.
Exploring the reactions of CO with PCP supported nickel complexes.
2
Chem. Commun. 2011, 47, 1824−6.
(
33) Lau, K.-C.; Petro, B. J.; Bontemps, S.; Jordan, R. F.
Comparative Reactivity of Zr− and Pd−Alkyl Complexes with
Carbon Dioxide. Organometallics 2013, 32, 6895−6898.
H
Organometallics XXXX, XXX, XXX−XXX