Journal of the American Chemical Society
Page 4 of 8
Synthesis, characterization, and computational details. This material is
available free of charge via the Internet at http:/ / pubs.acs.org.
quantum yields of aziridinyl fluorophores are approximately
twice as large as those of azetidinyl analogues in aqueous solu-
tion, in conjunction with enlarged Stokes shifts (Figure 2b).
These results are remarkable, considering that dimethylamino
phthalimide and NBD dyes are non-emissive in water.19,20 Un-
fortunately, the absolute quantum yields of 14 17 ( = 0.011
to 0.084) are low, largely due to intensive hydrogen bond inter-
actions around the fluorophore scaffolds.19,21
1
2
3
4
5
6
7
8
Corresponding Author
*Email: xiaogang@smart.mit.edu; Tel: +65-6516-1462.
*Email: zcxu@dicp.ac.cn; Tel: +86-411-84379648.
9
We have found one plausible mechanism to explain the vul-
nerabilities of quantum yield to hydrogen bond interactions
among different fluorophores. This vulnerability is closely relat-
ed to the partial charge increase upon photoexcitation, at hy-
drogen bond formation sites in the fluorophore scaffolds (Fig-
ure 2c, highlighted by arrows). We denote the total charge
change at these sites during HOMO
Author Contributions
¶X.L. and Q.Q. contributed equally to this work.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The authors declare no competing financial interests.
X.L. and M.J.L. thank National Research Foundation of Singapore
(through BioSyM Interdisciplinary Research Group at Singapore-MIT
Alliance for Research and Technology) for supporting this project.
Z.X. acknowledges the National Natural Science Foundation of China
(21276251), the 100 Talents Program funded by Chinese Academy of
Sciences, Dalian Cultivation Fund for Distinguished Young Scholars
(2014J11JH130 and 2015J12JH205) and the National Science Fund
for Excellent Young Scholars (21422606). The authors thank Dr. Jie
Pan for her assistance on photostability tests.
are observed. Coincidentally, the quantum yields of 1 and 10
are high ( = 0.432 for 1 and 0.899 for 10). In contrast, we no-
14
and 16 (Figure 2c, highlight by red arrows), indicating intensive
hydrogen bond interactions after photoexcitation. Accordingly,
their quantum yields are low ( = 0.020 for 14 and 0.084 for
16). Interestingly, this mechanism also works perfectly in ex-
plaining the quantum yield differences of several other fluoro-
phore families in protonic solvents, such as rhodol and oxazine
dyes (Supporting Information Section 1). Additional quantum
chemical calculations including explicit solvent molecules are
required to further understand such hydrogen bond interactions,
and are the subject of future work.
(1)
van der Velde, J. H.; Oelerich, J.; Huang, J.; Smit, J. H.; Jazi, A. A.;
Galiani, S.; Kolmakov, K.; Guoridis, G.; Eggeling, C.; Herrmann, A. Nat.
Commun. 2016, 7, 10144.
(2)
Grimm, J. B.; English, B. P.; Chen, J.; Slaughter, J. P.; Zhang, Z.;
Revyakin, A.; Patel, R.; Macklin, J. J.; Normanno, D.; Singer, R. H.; Lionnet, T.;
Lavis, L. D. Nat. Methods 2015, 12, 244.
(3)
Dempsey, G. T.; Vaughan, J. C.; Chen, K. H.; Bates, M.; Zhuang, X.
In conclusion, we have demonstrated that the up-up con-
formed aziridine ring is highly effective in suppressing TICT
rotation. Aziridinyl fluorophores thus demonstrate considerably
enhanced brightness and superior photostability, in comparison
to conventional dialkylamino substituted dyes. In highly polar
fluorophores with a strong TICT tendency (such as naph-
thalimide dyes), aziridinyl fluorophores even outperform their
azetidinyl analogues in aqueous solution. As another favorable
feature, a slight flattering of the aziridine ring upon photoexcita-
tion affords large Stokes shifts in aziridinyl fluorophores. More-
over, similar to that of the azetidine ring, employing the aziri-
dine ring requires minimal structural modifications, retains ad-
vantages of the parent fluorophores, permits facile synthesis and
further derivatization, and can be applied to a wide range of
fluorophores to enhance dye brightness and photostability.
Lastly, we show that substantial charge increase at hydrogen
bond formation sites in a fluorophore is detrimental to its quan-
tum yield in protonic solvents. Such knowledge on controlling
TICT and managing hydrogen bond interactions will inspire
the rational development of abundant high-performance dyes
across different fluorophore families, thus enabling unprece-
dented fluorescence imaging applications.
Nat. Methods 2011, 8, 1027.
(4)
Altman, R. B.; Terry, D. S.; Zhou, Z.; Zheng, Q.; Geggier, P.;
Kolster, R. A.; Zhao, Y.; Javitch, J. A.; Warren, J. D.; Blanchard, S. C. Nat.
Methods 2012, 9, 68.
(5)
Beaufils, F.; Johnsson, K. Chem. Biol. 2008, 15, 128.
(6) Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.;
Gautier, A.; Juillerat, A.; Heinis, C.; Corrêa, I. R.; Kindermann, M.;
Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M.
ACS Chem. Biol. 2008, 3, 373.
(7)
Planchon, T. A.; Gao, L.; Milkie, D. E.; Davidson, M. W.; Galbraith,
J. A.; Galbraith, C. G.; Betzig, E. Nat. Methods 2011, 8, 417.
(8)
499.
Jones, S. A.; Shim, S.-H.; He, J.; Zhuang, X. Nat. Methods 2011, 8,
(9)
Huang, B.; Babcock, H.; Zhuang, X. Cell 2010, 143, 1047.
(10)
(11)
Huang, B.; Bates, M.; Zhuang, X. Annu. Rev. Biochem. 2009, 78, 993.
G.; Plass, T.; Mueller, V.; Reymond, L.; Corrêa Jr, I. R.; Luo, Z.-G. Nat. Chem.
2013, 5, 132.
(12)
Jungmann, R.; Avendaño, M. S.; Dai, M.; Woehrstein, J. B.; Agasti,
S. S.; Feiger, Z.; Rodal, A.; Yin, P. Nat. Methods 2016, 13, 439.
(13) Legant, W. R.; Shao, L.; Grimm, J. B.; Brown, T. A.; Milkie, D. E.;
Avants, B. B.; Lavis, L. D.; Betzig, E. Nat. Methods 2016, 13, 359.
(14)
3899.
Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103,
(15)
(16)
Song, X.; Johnson, A.; Foley, J. J. Am. Chem. Soc. 2008, 130, 17652.
Vogel, M.; Rettig, W.; Sens, R.; Drexhage, K. H. Chem. Phys. Lett.
1988, 147, 452.
(17)
(18)
Liu, X.; Xu, Z.; Cole, J. M. J. Phys. Chem. C 2013, 117, 16584.
Sednev, M. V.; Belov, V. N.; Hell, S. W. Methods Appl. Fluoresc.
2015, 3, 042004.
(19) Loving, G.; Imperiali, B. J. Am. Chem. Soc. 2008, 130, 13630.
Supporting Information
ACS Paragon Plus Environment