Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
that light can be an effective and selective trigger for releasing
oligonucleotides and other types of bioactive molecules from
LMWG-based hydrogels. Mechanical and physical properties of
339.
12 V. A. Velema, J. P. van der Berg, M. J. Hansen, W. Szymanski,
A. J. M. Driessen, B. L. Feringa, Nature Chem., 2013, , 924-
DOI: 10.1039/C5CC09633B
5
hydrogels formed by
1 can be extensively modified by
928; V. A. Velema, W. Szymanski, B. L. Feringa, J. Am. Chem.
Soc., 2014, 136, 2178−2191; A. Rullo, A. Reiner, A. Reiter, D.
Trauner, E. Y. Isacoff, G. A. Woolley, Chem. Commun., 2014,
50, 14613-14615; M. Stein, S. J. Middendorp, V. Carta,
E. Pejo, D. E. Raines, S. A. Forman, E. Sigel, D. Trauner,
Angew. Chem., Int. Ed., 2012, 51, 10500-10504; I. Tochitsky,
M. R. Banghart, A. Mourot, J. Z. Yao, B. Gaub, R. H. Kramer,
D. Trauner, Nature Chem., 2012, 4, 105-111.
changing concentration of the gelator, as well as the pH and
concentrations of inorganic ions. The latter features indicate
prospective applicability of the material in the area of
environmental sensing. Together with the observed self-
healing behaviour it indicates considerable potential of
compositions based on
1 as smart materials for therapeutic
13 M. Schutt, S. S. Krupka, A. G. Milbradt, S. Deindl, E. K. Sinner,
purposes, particularly for photodynamic therapy based on
release of cytotoxic drugs or therapeutic oligonucleotides. To
consider applications in living organism, further studies will be
performed with the focus on issues like general toxicity of the
gelator, photoswitching with visible light for better tissue
penetration, or tuning the aminoacid residue to the particular
cargo types.
We gratefully acknowledge Prof. Dr. Stefan Bräse and the KIT
Karlsruhe, furthermore Mr. Volker Zibat, Mr. M. Ardakani and
PD Dr. Reinhard Schneider (LEM KIT Karlsruhe) for electron
microscopy imaging, as well as Mr. Lukas Arendt and Prof.
Manfred Wilhelm for their support in rheological
measurements. We also acknowledge the support of Deutsche
Forschungsgemeinschaft (“Graduiertenkolleg” GRK 2039).
D. Oesterhelt, C. Renner, L. Moroder, Chem. Biol., 2003, 10
487–490; O. Babii, S. Afonin, M. Berditsch,S. Reiβer, P. K.
,
Mykhailiuk, V. S. Kubyshkin, T. Steinbrecher, A. S. Ulrich, I. V.
Komarov, Angew. Chem., Int. Ed., 2014, 53(13), 3392-3395; J.
Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, P. A.
Hamm, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 2379–2384;
F. Zhang, K. A. Timm, K. M. Arndt, G. A. Woolley, Angew.
Chem., Int. Ed., 2010, 49, 3943-3946; H. Cahova, A. Jaeschke,
Angew. Chem., Int. Ed., 2013, 52, 3186-3190; D. Matsunaga,
H. Asanuma, M. Komiyama, J. Am. Chem. Soc., 2004, 126
11452–11453; T. Goldau, K. Murayama, C. Brieke, S.
,
Steinwand, P. Mondal, M. Biswas, I. Burghardt, J. Wachtveitl,
H. Asanuma, A. Heckel, Chem. Eur. J., 2015, 21, 2845-2854;
A. Aemissegger, V. Kräutler, W. F. van Gunsteren, D. Hilvert,
J. Am. Chem. Soc., 2005, 127, 2929–2936; T. Stafforst, D.
Hilvert, Angew. Chem., Int. Ed., 2010, 49, 9998-10001.
14 M. Bose, D. Groff, J. Xie, E. Brustad, P. G. Schultz, J. Am.
Chem. Soc., 2006, 128, 388–389.
15 W. Browne, B. L. Feringa, Nat. Nanotechnol., 2006, 1, 25-35;
Notes and references
R. Klajn, J. F. Stoddart, B. Grzybowski, Chem. Soc. Rev., 2010,
39, 2203–2237; D. Manna, T. Udayabhaskararao, H. Zhao, R.
Klajn, Angew. Chem., Int. Ed., 2015, 54, 12394 –12397; P. K.
Kundu, D. Samanta, R. Leizrowice, B. Margulis, H. Zhao, M.
Börner, T. Udayabhaskararao, D. Manna, R. Klajn, Nature
1
2
3
A. Mellati, S. Dai, J. Bi, B. Jin and H. Zhang, RSC Adv., 2014, 4,
63951-63961; D. E. Discher, P. Janmey and Y. L. Wang,
Science, 2005, 310 (5751), 1139-1143; V. Jayawarna, M. Ali,
T. A. Jowitt, A. E. Miller, A. Saiani, J. E. Gough, R. V. Ulijn, Adv.
Mater., 2006, 18, 611-614.
Chem., 2015,
Dommaschk, S. Grosjean, R. Herges, S. Bräse, C. Wöll, ACS
Nano, 2014, , 1463–1467; Z. Wang, L. Heinke, J. Jelic, M.
7, 646-652; L. Heinke, M. Cakici, M.
R. Ischakov, L. Adler-Abramovich, L. Buzhansky, T. Shekhter
and E. Gazit, Bioorg. Med. Chem., 2013, 21, 3517-3522; A.
Vintiloiu, J. C. Leroux, J. Controlled Release, 2008, 125, 179-
192; D. A. Salick, D. J. Pochan, J. P. Schneider, Adv. Mater.,
2009, 21, 4120-4123.
8
Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S.
Grosjean, R. Herges, S. Bräse, K. Reuter, C. Wöll, Phys. Chem.
Chem. Phys., 2015, 17, 14582-14587.
M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat.
16 G.-F. Liu, W. Ji, W.-L. Wang, C. L. Feng, ACS Applied Materials
Commun., 2011, 2, 511-516.
and Interfaces, 2015, 7, 301-307; C. Maity, W. E. Hendriksen,
4
5
G. O. Lloyd, J. W. Steed, Nature Chem., 2009, 1, 437-442.
J. H. van Esch, R. Eelkema, Angew. Chem., Int. Ed., 2015, 54
998-1001.
,
A. J. Kleinsmann, N. M. Weckenmann, B. J. Nachtsheim,
Chem. Eur. J., 2014, 20, 9753-9761.
17 W. A. Velema, M. C. A. Stuart, W. Szymanski, B. L. Feringa,
Chem. Commun., 2013, 49, 5001-5003; X. Li, Y. Gao, Y.
Kuang, B. Xu, Chem. Commun., 2010, 46, 5364–5366; J. T.
6
P. W. J. M. Frederix, G. G. Scott, Y. M. Abul-Haija, D.
Kalafatovic, C. G. Pappas, N. Javid, N. T. Hunt, R. V. Ulijn, T.
Tuttle, Nature Chem., 2014, 7, 30-37; H. Qian, I. Aprahamian,
Chem. Commun., 2015, 51, 11158-11161; S. Fleming, R. V.
Ulijn, Chem. Soc. Rev., 2014, 43, 8150-8177.
van Herpt, M. C. A. Stuart, W. R. Browne, B. L. Feringa, Chem.
Eur. J., 2014, 20, 3077 – 3083.
18 S. Gojgini, T. Tokatlian, T. Segura, Mol. Pharmaceutics, 2011,
7
8
R. Afrasiabi, H.-B. Kraatz, Chem. Eur. J., 2015, 21, 7695-7700.
J. ten Schiphorst, S. Coleman, J. E. Stumpel, A. Ben Azouz, D.
Diamond, A. P. H. J. Schenning, Chem. Mater., 2015, 27
5925-5931; L. Peng, M. You, Q. Yuan, C. Wu, D. Han, Y. Chen,
Z. Zhong, J. Xue, W. Tan, J. Am. Chem. Soc., 2012, 134
8
, 1582-1591; K. W. Chun, J. B. Lee, S. H. Kim, T. G. Park,
Biomaterials, 2005, 26, 3319–3326; D. Trentin, J. Hubbell, H.
Hall, J. Controlled Release, 2005, 102, 263–275.
19 A. J. Kleinsmann, B. J. Nachtsheim, Chem. Commun., 2013,
49, 7818-782.
,
,
12302−12307; J. K. Sahoo, S. K. M. Nalluri, N. Javid, H. Webb,
R. V. Ulijn, Chem. Commun., 2014, 50, 5462-5464.
T. Yoshii, M. Ikeda, I. Hamachi, Angew. Chem., Int. Ed., 2014,
126, 7392-7395; T. Muraoka, C.-Y. Koh, H. Cui, S. I. Stupp,
Angew. Chem., Int. Ed., 2009, 48, 5946–5949; I. Tomatsu, K.
Peng, A. Kros, Advanced Drug Delivery Reviews, 2011, 63
1257-1266.
20 N. Nishimura, T. Sueyoshi, H. Yamanaka, E. Imai, S.
Yamamoto and S. Hasegawa, Bull. Chem. Soc. Jpn., 1976, 49
1381–1387; E. R. Talaty and J. C. Fargo, J. Chem. Soc., 1967,
65–66.
,
9
,
10 Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic, J.
T. Foy and N. Giuseppone, Nature Nanotech., 2015, 10, 161-
165.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins