C O M M U N I C A T I O N S
Table 2. Electroluminescence Data for 5a-d and 6
of 1.1, 2.9, and 3.2%. Their respective luminance and power
efficiencies (ηc/ηp) are 2.9/1.2, 7.8/3.7, and 2.3/1.2 cd A-1/lm W-1
.
c
Emb
λmax
Von
V
Lc
c
confa
ηext
ηcc
/
ηpc
cd/m2
Overall, the optoelectronic performance is 2 times better when
5b is utilized as an ET and emitting layer. On the contrary, the
optoelectronic performances are 2-3 times better when 5c or 5d
is employed as HT and emitting layers. Nevertheless, both the 5b
and 5c can function as bipolar electroluminescent materials with
more balanced charge transporting properties in view of the
satisfactory OLED performances in complementary device con-
figurations A and B. To further optimize the device efficiency, we
have also fabricated a four-layered device with a configuration of
R-NPB/5c (40 nm)/BCP/Alq3 (configuration C). For this combina-
tion of using 5c as the sole emitting layer, the OLED device exhibits
Lmax and L20 of 69700 and 2503 cd/m2 with ηext of 4.9%. The
luminance and power efficiencies (ηc/ηp) are 13.1/6.5 cd A-1/lm
W-1. To our knowledge, green emitting 5b, yellow-emitting 5c,
and red emitting 5d represent one of the best bipolar fluorescent
materials to date.12
5a/A
5b/A
5b/B
6/A
Alq3/A
5c/A
5c/B
5c/C
5d/A
5d/B
490 (70)
520 (82)
524 (88)
502 (90)
516(104)
576 (95)
580 (97)
578 (96)
642(102)
644(101)
4.5 (4.9)
2.5 (4.0)
4.7 (7.4)
2.7 (4.0)
3.9 (5.6)
2.8 (3.9)
3.9 (6.5)
4.4 (6.3)
3.7 (5.7)
4.1 (5.8)
0.45
1.92
1.06
1.75
1.11
0.98
2.90
4.92
0.81
3.17
0.82/0.52
6.35/5.02
2.90/1.19
5.07/3.95
3.29/1.84
2.54/2.05
7.75/3.73
13.10/6.54
0.85/0.47
2.31/1.21
5995 (205)
35372 (1268)
11733 (414)
20640 (1055)
28911 (638)
23716 (524)
20683 (1542)
69700 (2503)
3558 (167)
11484 (1102)
a Configuration (conf) A: ITO/NPB (40 nm)/5a-d (40 nm)/LiF (1 nm)/
Al; B: ITO/5b-d (40 nm)/BCP (10 nm)/Alq3 (40 nm)/LiF (1 nm)/Al; C:
ITO/NPB (40 nm)/5c (40 nm)/BCP (10 nm)/Alq3 (40 nm)/LiF (1 nm)/Al.
b The data in parentheses correspond to full-width at half-maximum (fwhm).
c The data in parentheses for Von and L and the data for ηext (%), ηc (cd/A),
and ηp (lm/W) were measured at 20 mA/cm2.
(Tg, 153-186 °C). For example, the Td and Tg (372 °C and 160
°C) for 5b (C47H32N2O2, fw: 656.8) are 51 and 86 °C higher than
those (321 °C and 74 °C) for the corresponding open-form system-6
[i.e., 5,8-bis-(4-methoxyphenyl)-2,3-diphenyl-quinoxaline (C34H26-
N2O2, fw: 494.6)].
The redox behaviors of 5a-d were evaluated by cyclic volta-
mmetry (CV) experiments at ambient temperature. They exhibit
similar reduction potentials with reversible redox couples at -2.08
( 0.03 V. No discernible oxidations were found in less than +1.5
V for 5a and 5b. Nevertheless, reversible two-electron oxidation
redox couples can be identified for triarylamino-containing 5c and
5d. They show oxidation potential at +0.46 V for 5c and a pair of
+0.08 and +0.27 eV for 5d owing to sequential oxidations of the
two amino appendages. When compared with Ar3N/quinoxaline4a,b
and spiro-fluorene-based dipolar hybrids,5d the current new designs
show slightly lower redox potentials, which may facilitate better
charge injection from both carriers.
Acknowledgment. We thank the National Science Council of
Taiwan for generous financial support of this research.
Supporting Information Available: Experimental, device, and
spectra details of 2-6 and cif files for 5b and 5d. This material is
References
(1) (a) Hung, L. S.; Chen, C. H. Mater. Sci. Eng. Report 2002, 39, 143. (b)
Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay,
K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. (c)
Mullen, K.; Scherf, U. Organic Light-Emitting DeVices. Synthesis,
Properties and Applications; Wiley: Weinheim, Germany, 2006.
(2) (a) Mochizuki, H.; Hasui, T.; Kawamoto, M.; Shiono, T.; Ikeda, T.;
Adachi, C.; Taniguchi, Y.; Shirota, Y. Chem. Commun. 2000, 1923. (b)
Tamoto, N.; Adachi, C.; Nagai, K. Chem. Mater. 1997, 9, 1077. (c) Peng,
Z. H.; Bao, Z. N.; Galvin, M. E. Chem. Mater. 1998, 10, 2086.
(3) (a) Liu, Y.; Ma, H.; Jen, A. K.-Y. Chem. Commun. 1998, 2747. (b) Wang,
Y. Z.; Epstein, A. J. Acc. Chem. Res. 1999, 32, 217. (c) Jenekhe, S. A.;
Lu, L. D.; Alam, M. M. Macromolecules 2001, 34, 7315.
Their optoelectronic performances are evaluated as respective
ET-type and HT-type emitting layers by fabricating bilayer or
trilayer OLED devices with two different configurations. 1,4-Bis-
(1-naphthylphenylamino)-biphenyl (R-NPB11) and Alq3 were em-
ployed (40 nm thickness each) as HT and ET layers, respectively.
In the combination of respective 5a-d with Alq3, 2,9-dimethyl-
4,7-diphenyl-1,10-phenanthroline (BCP) was utilized as a hole
blocking layer (10 nm) to completely suppress emission leakage
from Alq3. When 5a, 5b, 5c, and 5d were examined as ET and
emitting materials in device configuration A (Table 2), the resultant
OLED devices exhibit maximum EL brightness (Lmax) of 5995,
35372, 23716, and 3558 cd/m2, respectively. Their operational
brightness (L20) at 20 mA/cm2 can reach 205, 1268, 524, and 167
cd/m2, respectively, with individual external quantum efficiency
(ηext) of 0.5, 1.9, 1.0, and 0.8%. Their luminance and power
(4) (a) Justin Thomas, K. R.; Lin, J. T.; Tao, Y.-T.; Chuen, C.-H. Chem.
Mater. 2002, 14, 3852. (b) Kido, J.; Harada, G.; Nagai, K. Chem. Lett.
1996, 161. (c) Song, S.-Y.; Jang, M. S.; Shim, H.-K.; Hwang, D.-H.;
Zyung, T. Macromolecules 1999, 32, 1482. (d) For quinoxaline-thiophene
alternating polymers, see the following: Nurulla, I.; Yamaguchi, I.;
Yamamoto, T. Polym. Bull. 2000, 44, 231. (e) Yamamoto, T.; Zhou, Z.-
H.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T.; Nakamura, Y.;
Fukuda, T.; Lee, B.-L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.;
Kubota, K.; Sasaki, S. J. Am. Chem. Soc. 1996, 118, 10389.
(5) (a) Geng, Y.; Katsis, D.; Culligan, S. W.; Ou, J. J.; Chen, S. H.; Rothberg,
L. J. Chem. Mater. 2002, 14, 463. (b) Wong, K.-T.; Chien, Y.-Y.; Chen,
R.-T.; Wang, C.-F.; Lin, Y.-T.; Chiang, H.-H.; Hsieh, P.-Y.; Wu, C.-C.;
Chou, C. H.; Su, Y. O.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2002,
124, 11576. (c) Wong, K.-T.; Hwu, T.-Y.; Balaiah, A.; Chao, T.-C.; Fang,
F.-C.; Lee, C.-T.; Peng, Y.-C. Org. Lett. 2006, 8, 1415. (d) Fungo, F.;
Wong, K.-T.; Ku, S.-Y.; Hung, Y.-Y.; Bard, A. J. J. Phys. Chem. B. 2005,
109, 3984.
(6) (a) Zhu, W.; Hu, M.; Yao, R.; Tian, H. J. Photochem. Photobiol., A 2003,
154, 109. (b) Freudenmann, R.; Behnisch, B.; Hanack, M. J. Mater. Chem.
2001, 11, 1618. (c) Hassheider, T.; Benning, S. A.; Kitzerow, M. F.; Bock,
A. H. Angew. Chem., Int. Ed. 2001, 40, 2060.
efficiencies (ηc/ηp) are 0.8/0.5, 6.4/5.0, 2.5/2.1, and 0.9/0.5 cd A-1
/
lm W-1, respectively. Notably, 5b acted more as a superior ET
and emitting dipolar material than Alq3 in terms of operational
voltage (4.0 vs 5.6 V), emission peak width (fwhm: 82 vs 104
nm), L20 (12688 vs 638 cd/m2), ηext (1.9 vs 1.1%), and working
efficiencies (6.4/5.0 vs 3.3/1.8 cd A-1/lm W-1) when both devices
were fabricated simultaneously under the same conditions.
Conversely, when 5a-d were examined as HT and emitting
materials in device configuration B (Table 2), all the devices except
that from 5a showed promising results. The resultant OLED devices
from 5b, 5c, and 5d exhibit a maximum EL brightness (Lmax) of
11773, 20683, and 11484 cd/m2, respectively. Their operational
brightness (L20) at 20 mA/cm2 can reach 414, 1542, and 1102 cd/
(7) Chen, C.-T.; Lin, J.-S.; Moturu, M. V. R. K.; Lin, Y.-W.; Yi, W.; Tao,
Y.-T.; Chien, C.-H. Chem. Commun. 2005, 3980.
(8) Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon,
S.-W. J. Am. Chem. Soc. 1997, 119, 11341.
(9) Chen, C.-T.; Chou, Y.-C. J. Am. Chem. Soc. 2000, 122, 7662
(10) (a) Chien, Y.-Y.; Wong, K.-T.; Chou, P.-T.; Cheng, Y.-M. Chem. Commun.
2002, 2874. (b) Wong, K.-T.; Chen, R.-T.; Fang, F.-C.; Wu, C.-C.; Lin,
Y.-T. Org. Lett. 2005, 7, 1979.
(11) (a) Koene, B. E.; Loy, D. E.; Thompson, M. E. Chem. Mater. 1998, 10,
2235. (b) O’Brien, D. F.; Burrows, P. E.; Forrest, S. R.; Koene, B. E.;
Loy, D. E.; Thompson, M. E. AdV. Mater. 1998, 10, 1108.
(12) (a) Huang, T.-H.; Lin, J.-T.; Chen, L.-Y.; Lin, Y.-T.; Wu, C.-C. AdV.
Mater. 2006, 18, 602. (b) Justin Thomas, K. R.; Lin, J. T.; Tao, Y.-T.;
Chuen, C.-H. Chem. Mater. 2002, 14, 2796. (b) Chen, C.-T. Chem. Mater.
2004, 16, 4389.
m2, respectively, with individual external quantum efficiency (ηext
)
JA062660V
9
J. AM. CHEM. SOC. VOL. 128, NO. 34, 2006 10993