Paper
Green Chemistry
3
3
(m, 1H, OCH), 6.91 (d, J = 8.0 Hz, 2H, C6H5), 7.02 (t, J = 7.4
Hz, 2H, C6H5), 7.31 (t, 3J = 8.0 Hz, 2H, C6H5); 13C NMR (CDCl3,
100.6 MHz) δ 66.17, 68.84, 74.11, 114.57, 121.92, 129.62,
154.65, 157.71.
(e) K. M. K. Yu, I. Curcic, J. Gabriel and S. C. E. Tsang, Chem-
SusChem, 2008, 1, 893; (f) T. Sakakura, J. C. Choi and
H. Yasuda, Chem. Rev., 2007, 107, 2365; (g) D. B. Dell’Amico,
F. Calderazzo, L. Labella, F. Marchetti and G. Pampaloni,
Chem. Rev., 2003, 103, 3857; (h) I. Omae, Catal. Today, 2006,
115, 33; (i) G. W. Coates and D. R. Moore, Angew. Chem., Int.
Ed., 2004, 43, 6618; ( j) D. J. Darensbourg and
M. W. Holtcamp, Coord. Chem. Rev., 2003, 103, 3857;
(k) X. L. Yin and J. R. Moss, Coord. Chem. Rev., 1999, 181, 27.
3 For recent reviews on chemical reaction in CO2, see:
(a) Chemical Synthesis Using Supercritical Fluids, ed.
P. D. Jessop and W. Leitner, Willy-VCH, Weinheim, 1999;
(b) P. D. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 1999,
99, 475; (c) A. Baiker, Chem. Rev., 1999, 99, 453;
(d) W. Leitner, Top. Curr. Chem., 1999, 206, 107;
(e) P. Licence, J. Ke, M. Sokolova, S. K. Ross and
M. Poliakoff, Green Chem., 2003, 5, 99; (f) W. Keim, Green
Chem., 2003, 5, 105; (g) R. A. Sheldon, Green Chem., 2005, 7,
267; (h) Green Chemistry Using Liquid and Supercritical
Carbon Dioxide, ed. J. M. DeSimone and W. Tumas, Oxford
University Press, 2003; (i) E. J. Beckman, J. Supercrit. Fluids,
2004, 28, 121; ( j) P. G. Jessop, J. Supercrit. Fluids, 2006, 38,
211; (k) H. R. Hobbs and N. R. Thomas, Chem. Rev., 2007,
107, 2786; (l) P. Jessop and B. Subramaniam, Chem. Rev.,
2007, 107, 2666.
4-Chloromethyl-1,3-dioxolan-2-one (6e). 1H NMR (CDCl3,
400 MHz) δ 3.71 (dd, 3J = 3.2 Hz, 2J = 12.0 Hz, 1H, ClCH2), 3.80
(dd, 3J = 5.2 Hz, J = 12.0 Hz, 1H, ClCH2), 4.39 (dd, J = 6.0 Hz,
2J = 8.4 Hz, 1H, OCH2), 4.58 (t, 3J = 8.4 Hz, 1H, OCH2), 4.98 (m,
1H, CHO); 13C NMR (CDCl3, 100.6 MHz) δ 43.83, 66.84, 74.29,
154.28.
2
3
4-Isopropoxy-1,3-dioxolan-2-one (6e). 1H NMR (CDCl3,
400 MHz) δ 1.08 (t, 3J = 6.4 Hz, 6H, 2 × CH3), 3.62–3.51 (m, 3H,
(CH3)2CHO, (CH3)2CHOCH2), 4.30 (dd, 3J = 8.0 Hz, 2J = 15.6 Hz,
1H, OCH2), 4.42 (dd, J = 8.0 Hz, J = 15.6 Hz, 1H, OCH2), 4.74
(m, 1H, CHO); 13C NMR (CDCl3, 100.6 MHz) δ 21.52, 21.64,
66.15, 66.88, 72.58, 75.18, 155.02.
3
2
Conclusions
In summary, phosphonium chloride covalently bound to fluor-
ous polymers is proved to be an efficient and recyclable homo-
geneous CO2-soluble catalyst for solvent-free synthesis of cyclic
carbonate from propylene oxide and carbon dioxide under
supercritical conditions. Incorporation of the fluorinated
chain in the polymer effectively enhance the solubility of phos-
phonium salts which are usually insoluble in scCO2, thus pro-
viding a simple way for performing homogeneous catalysis
under scCO2 conditions. Furthermore, the catalyst can be
easily recovered upon releasing CO2 and is reusable for up to 7
cycles without significant loss of activity, while the selectivity
of propylene carbonate remained >99%.
4 (a) A.-A. G. Shaikh and S. Sivaram, Chem. Rev., 1996, 96, 951;
(b) M. Yoshida and M. Ihara, Chem.–Eur. J., 2004, 10, 2886;
(c) B. Schäffner, F. Schäffner, S. P. Verevkin and A. Börner,
Chem. Rev., 2010, 110, 4554.
5 For recent typical references on coupling of CO2 and epox-
ides catalyzed by homogeneous catalytic system, see:
(a) Z.-Z. Yang, Y.-N. Zhao, L.-N. He, J. Gao and Z.-S. Yin,
Green Chem., 2012, 14, 519; (b) Z.-Z. Yang, L.-N. He,
Y.-N. Zhao, B. Li and B. Yu, Energy Environ. Sci., 2011, 4,
3971; (c) Z.-Z. Yang, L.-N. He, C.-X. Miao and S. Chanfreau,
Adv. Synth. Catal., 2010, 352, 2233; (d) C.-X. Miao,
J.-Q. Wang, Y. Wu, Y. Du and L.-N. He, ChemSusChem, 2008,
1, 236; (e) A. Ghosh, P. Ramidi, S. Pulla, S. Z. Sullivan,
S. L. Collom, Y. Gartia, P. Munshi, A. S. Biris, B. C. Noll and
B. C. Berry, Catal. Lett., 2010, 137, 1; (f) J. Sun, L.-J. Han,
W.-G. Cheng, J.-Q. Wang, X.-P. Zhang and S.-J. Zhang, Chem-
SusChem, 2011, 4, 502; (g) F. Wu, X.-Y. Dou, L.-N. He and
C.-X. Miao, Lett. Org. Chem., 2010, 7, 73; (h) X.-Y. Dou,
J.-Q. Wang, Y. Du, E. Wang and L.-N. He, Synlett, 2007, 3058;
(i) L.-N. He, H. Yasuda and T. Sakakura, Green Chem., 2003,
5, 92; ( j) H. Yasuda, L.-N. He and T. Sakakura, J. Catal.,
2005, 233, 119; (k) R. L. Paddock and S. T. Nguyen, J. Am.
Chem. Soc., 2001, 123, 11498; (l) X.-B. Lu, B. Liang,
Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang and
R. Zhang, J. Am. Chem. Soc., 2004, 126, 3732; (m) T. Aida and
S. Inoue, J. Am. Chem. Soc., 1983, 105, 1304; (n) H. S. Kim,
J. J. Kim, B. G. Lee, O. S. Jung, H. G. Jang and S. O. Kang,
Angew. Chem., Int. Ed., 2000, 39, 4096; (o) J.-S. Tian,
C.-X. Miao, J.-Q. Wang, F. Cai, Y. Du, Y. Zhao and L.-N. He,
Green Chem., 2007, 9, 566; (p) R. L. Paddock and
S. T. Nguyen, Chem. Commun., 2004, 1622; (q) V. Caló,
Acknowledgements
This work was partially supported by the National Science
Foundation of China (Grant 21172125).
Notes and references
1 For recent reviews on fixation of carbon dioxide, see:
(a) D. J. Darensbourg, R. M. Mackiewicz, A. L. Phelps and
D. R. Billodeaux, Acc. Chem. Res., 2004, 37, 836;
(b) P. Braunstein, D. Matt and D. Nobel, Chem. Rev., 1988,
88, 747; (c) K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno,
P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud,
E. A. Couladouros, K. Paulvannanand and E. J. Sorensen,
Nature, 1994, 367, 630; (d) D. H. Gibson, Chem. Rev., 1996,
96, 2063; (e) W. Leitner, Coord. Chem. Rev., 1996, 153, 257.
2 For recent reviews on transformation of carbon dioxide, see:
(a) X.-B. Lu and D. J. Darensbourg, Chem. Soc. Rev., 2012, 41,
1462; (b) I. Omae, Coord. Chem. Rev., 2012, 256, 1384;
(c) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann
and F. E. Kühn, Angew. Chem., Int. Ed., 2011, 50, 8510;
(d) T. Sakakura and K. Kohno, Chem. Commun., 2009, 1312;
114 | Green Chem., 2013, 15, 110–115
This journal is © The Royal Society of Chemistry 2013