10.1002/anie.201809400
Angewandte Chemie International Edition
COMMUNICATION
M. Spiewak, K. A. Johnson, T. A. DiBenedettom S. Kim, L. K. G.
Ackerman, D. J. Weix, J. Am. Chem. Soc. 2016, 138, 5016-5019.
For pioneering studies of photoinduced activation of NHP esters, see: a)
K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 1988, 110, 8736-
8738; b) K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am.
Chem. Soc. 1991, 113, 9401-9402; c) M. J. Schnermann, L. E.
Overman, Angew. Chem. Int. Ed. 2012, 51, 9576-9580; Angew. Chem.
2012, 124, 9714-9718; d) Y. Jin, H. Yang, H. Fu, Org. Lett. 2016, 18,
6400-6403; e) W.-M. Cheng, R. Shang, Y. Fu, ACS Catal. 2017, 7, 907-
911; f) D. Hu, L. Wang, P. Li, Org. Lett. 2017, 19, 2770-2773; g) Y.
Zhao, J.-R. Chen, W.-J. Xiao, Org. Lett. 2018, 20, 224-227; h) G.-Z.
Wang, R. Shang, Y. Fu, Org. Lett. 2018, 20, 888-891; i) A. Tlahuext-
Aca, L. Candish, R. A. Garza-Sanchez, F. Glorius, ACS Catal. 2018, 8,
1715-1719; j) L. Ren, H. Cong, Org. Lett. 2018, 20, 3225-3228; k) Z.-H.
Xia, C.-L. Zhang, Z.-H. Gao, S. Ye, Org. Lett. 2018, 20, 3496-3499; l) A.
Tlahuext-Aca, R. A. Garza-Sanchez, Glorius, F. Angew. Chem., Int. Ed.
2017,56, 3708-3711; Angew. Chem. 2017, 129, 3762-3765; m) J.-J.
Zhang, J.-C. Yang, L.-N. Guo, X.-H. Duan, Chem. Eur. J. 2017, 23,
10259-10263; n) W.-M. Cheng, R. Shang, M.-C. Fu, Y. Fu, Chem. Eur.
J. 2017, 23, 2537-2541; o) R. Mao, J. Balon, X. Hu, Angew. Chem., Int.
Ed. 2018, 57, 9501-9504; Angew. Chem. 2018, 130, 9645-9648; p) R.
Mao, A. Frey, J. Balon, X. Hu, Nat.Catal. 2018, 1, 120-126; q) R. Mao,
J. Balon, X. Hu, Angew. Chem., Int. Ed. 2018, 57, 13624-13628; Angew.
Chem. 2018, 130, 13812-13816.
based bioactive molecules, such as the analogue of collagen
tripeptide.
[5]
Acknowledgements
We are grateful for the grants from the NSFC (No. 21432003)
and Fundamental Research Funds for the Central Universities
(lzujbky-2017-127 and lzujbky-2018-k9). The authors thanks
Prof. Yong Ding, Prof. Yawen Wang, Dr. Junqi Lin, Dr. Xu Feng,
and Dr. Baojun Wang for helpful discussion and technical
assitance.
Keywords: alkylation • decarboxylative • C(sp3)-C(sp3) cross-
coupling • copper • peptide
[1]
[2]
M. S. Kharasch, J. K. Hambling, T. P. Rudy, J. Org. Chem. 1959, 24,
303-305.
a) V. D. Parker, L. H. Piette, R. M. Salinger, C. R. Noller, J. Am. Chem.
Soc. 1964, 86, 1110-1112; b) V. D. Parker, C. R. Noller, J. Am. Chem.
Soc. 1964, 86, 1112-1116; c) M. Tamura, J. Kochi, J. Am. Chem. Soc.
1970, 93, 1483-1485; d) M. Tamura, J. Kochi, J. Am. Chem. Soc. 1970,
93, 1485-1487; e) M. R. Netherton, C. Dai, K. Neuschütz, G. C. Fu, J.
Am. Chem. Soc. 2001, 123, 10099-10100; f) T. Ishiyama, S. Abe, N.
Miyaura, A. Suzuki, Chem. Lett. 1992, 21, 691-694; g) A.
Devasagayaraj, T. Stüdemann, P. Knochel, Angew. Chem. Int. Ed.
1995, 34, 2723-2725; Angew. Chem. 1995, 107, 2952-2954; h) J.
Terao, H. Watanabe, A. Ikumi, H. Kuniyasu, N. Kambe, J. Am. Chem.
Soc. 2002, 124, 4222-4223; i) T. Tsuji, H. Yorimitsu, K. Oshima, Angew.
Chem. Int. Ed. 2002, 41, 4137-4139; Angew. Chem. 2002, 114, 4311-
4313; j) K. B. Urkalan, M. S. Sigman, J. Am. Chem. Soc. 2009, 131,
18042; k) O. Vechorkin, X. Hu, Angew. Chem. Int. Ed. 2009, 48, 2937-
2940; Angew. Chem. 2009, 121, 2981-2984; l) P. Ren, L.-A. Stern, X.
Hu, Angew. Chem. Int. Ed. 2012, 51, 9110-9113; Angew. Chem. 2012,
124, 9244-9247; m) P. M. P. Garcia, T. D. Franco, A. Orsino, P. Ren, X.
Hu, Org. Lett. 2016, 14, 4286-4289.
[6]
[7]
[8]
W. Zhao, R. P. Wurz, J. C. Peters, G. C. Fu, J. Am. Chem. Soc. 2017,
139, 12153-12156.
C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C. MacMillan, Nature 2017,
547, 79-83.
W.-J. Zhou, G.-M. Cao, G. Shen, X.-Y. Zhu, Y.-Y. Gui, J.-H. Ye, L. Sun,
L.-L. Liao, J. Li, D.-G. Yu, Angew. Chem. Int. Ed. 2017, 56, 15683-
15687; Angew. Chem. 2017, 129, 15889-15893.
[9]
For reviews, see: a) S. Paria, O. Reiser, ChemCatChem 2014, 6, 2477-
2483; b) O. Reiser, Acc. Chem. Res. 2016, 49, 1990-1996; c) A. C.
Hernandez-Perez, S. K. Collins, Acc. Chem. Res. 2016, 49, 1557-1565.
[10] a) E. Rémond, C. Martin, J. Martinez, F. Cavelier, Chem. Rev. 2016,
116, 11654-11684; b) H. Xiao, A. Chatterjee, S.-H. Choi, K. M. Bajjuri,
S. C. Sinha, P. G. Schultz, Angew. Chem. Int. Ed. 2013, 52, 14080-
14083; Angew. Chem. 2013, 125, 14330-14333.
[11] a) J. Sperling, D. Elad, J. Am. Chem. Soc. 1971, 93, 967-971; b) M.
Schwarzberg, J. Sperling, D. Elad, J. Am. Chem. Soc. 1973, 95, 6418-
6426; c) H. Yu, Y. Xu, R. Dong, Y. Fang, Adv. Synth. Catal. 2017, 359,
39-43.
[3]
a) J. Cornella, J. T. Edwards, T. Qin, S. Kawamura, J. Wang, C.-M. Pan,
R. Gianatassio, M. Schmidt, M. D. Eastgate, P. S. Baran, J. Am. Chem.
Soc. 2016, 138, 2174-2177; b) F. Toriyama, J. Cornella, L. Wimmer, T.-
G. Chen, D. D. Dixon, G. Creechm, P. S. Baran, J. Am. Chem. Soc.
2016, 138, 11132-11135; c) J. Wang, T. Qin, T.-G. Chen, L. Wimmer, J.
T. Edwards, J. Cornella, B. Vokits, S. A. Shaw, P. S. Baran, Angew.
Chem. Int. Ed. 2016, 55, 9676-9679; Angew. Chem. 2016, 128, 9828-
9831; d) J. M. Smith, T. Qin, R. R. Merchant, J. T. Edwards, L. R.
Malins, Z. Liu, G. Che, Z. Shen, S. A. Shaw, M. D. Eastgate, P. S.
Baran, Angew. Chem. Int. Ed. 2017, 56, 11906-11910; Angew. Chem.
2017, 129, 12068-12072; e) T. Qin, L. R. Malins, J. T. Edwards, R. R.
Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M. Yan, C. Yuan, M.
D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 260-265;
Angew. Chem. 2017, 129, 266-271; f) C. Li, J. Wang, L. M. Barton, S.
Yu, M. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A. Johnson, A. K.
Chatterjee, M. Yan, P. S. Baran, Science 2017, 356, eaam7355; g) J. T.
Edwards, R. R. Merchant, K. S. McClymont, K. W. Knouse, T. Qin, L. R.
Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. We, T. Zhou, M. D.
Eastgate, P. S. Baran, Nature 2017, 545, 213-218; h) A. Fawcett, J.
Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers, V. K. Aggarwal, Science
2017, 357, 283-286; i) N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E.
Reisman, Org. Lett. 2017, 19, 2150-2153.
[12] H. Peng, J.-T. Yu, Y. Jiang, H. Yang, J. Cheng, J. Org. Chem. 2014, 79,
9847-9853.
[13] C. Wang, Y. Lei, M. Guo, Q. Shang, H. Liu, Z. Xu, R. Wang, Org. Lett.
2017, 19, 6412-6415.
[14] a) Y. Wang, Y. Xing, X. Liu, H. Ji, M. Kai, Z. Chen, J. Yu, D. Zhao, H.
Ren, R. Wang, J. Med. Chem. 2012, 55, 6224-6236; b) X. Liu, Y. Wang,
Y. Xing, J. Yu, H. Ji, M. Kai, Z. Wang, D. Wang, Y. Zhang, D. Zhao, R.
Wang, J. Med. Chem. 2013, 56, 3102-3114.
[15] a) T. Rawner, E. Lutsker, C. A. Kaiser, O. Reiser, ACS Catal. 2018, 8,
3950-3956; b) A. Hossain, A. Vidyasagar, C. Eichinger, C. Lankes, J.
Phan, J. Rehbein, O. Reiser, Angew. Chem. Int. Ed. 2018, 57, 8288-
8292; Angew. Chem. 2018, 130, 8420-8424.
[16] CuI(dmp)(xantphos) complex was prepared and used as photocatalys,
see: a) A. C. Hernandez-Perez, S. K. Collins, Angew. Chem. Int. Ed.
2013, 52, 12696-12700; Angew. Chem. 2013, 125, 12928-12932; b) P.
Xiao, F. Dumur, J. Zhang, J. P. Fouassier, D. Gigmes, J. Lalevee,
Macromolecules 2014, 47, 3837-3844; c) C. Minozzi, A. Caron, J.-C.
Grenier-Petel, J. Santandrea, S. K. Collins, Angew. Chem. Int. Ed.
2018, 57, 5477-5481; Angew. Chem. 2018, 130, 5575-5579.
[17] When Cu(MeCN)4PF6 was in situ combined with different diamine and
bisphosphine ligands, and used in the standard reaction, only some of
them showed catalytic activities.The HRMS analysis of the reaction
mixtures indicated that the Cu(diamine)(bisphosphine)PF6 complexes
[4]
a) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura,
B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801-
805; b) X. Lu, B. Xiao, L. Liu, Y. Fu, Chem. Eur. J. 2016, 22, 11161-
11164; c) K. M. M. Huihui, J. A. Caputo, Z. Melchor, A. M. Olivares, A.
were
formed.
In
addition,
the
prefabricated
This article is protected by copyright. All rights reserved.