Journal of the American Chemical Society
Page 4 of 5
2.
(a) Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop,
via a linear intermediate. Angew. Chem., Int. Ed. 2003, 42, 2738-
B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.;
Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-
M.; Stoddart, J. F., Linear Artificial Molecular Muscles. J. Am.
Chem. Soc. 2005, 127, 9745-59. (b) Bruns, C. J.; Stoddart, J. F.,
Rotaxane-Based Molecular Muscles. Acc. Chem. Res. 2014, 47,
2186-99. (c) Nakahata, M.; Takashima, Y.; Hashidzume, A.;
Harada, A., Redox-Generated Mechanical Motion of a Supramo-
lecular Polymeric Actuator Based on Host–Guest Interactions. An-
gew. Chem. Int. Ed., 2013, 52, 5731–5735. (d) Greene, A. F.; Dan-
ielson, M. K.; Delawder, A. O.; Liles, K. P.; Li, X.; Natraj, A.;
Wellen, A.; Barnes, J. C., Redox-Responsive Artificial Molecular
Muscles: Reversible Radical-Based Self-Assembly for Actuating
Hydrogels. Chem. Mater. 2017, 29, 9498-9508.
For existing artificial muscles, see: (a) Behl, M.; Lendlein, A., Ac-
tively moving polymers. Soft Matter 2007, 3, 58-67. (b) Sisson, A.
L.; Lendlein, A., Advances in actively moving polymers. Macro-
mol. Mater. Eng. 2012, 297, 1135-1137. (c) Mirfakhrai, T.; Mad-
den, J. D. W.; Baughman, R. H., Polymer artificial muscles. Mater.
Today 2007, 10, 30-38. (d) Brochu, P.; Pei, Q., Advances in Die-
lectric Elastomers for Actuators and Artificial Muscles. Macromol.
Rapid Commun. 2010, 31, 10-36. (e) Shahinpoor, M.; Kim, K. J.,
Ionic polymer-metal composites: IV. Industrial and medical appli-
cations. Smart Mater. Struct. 2005, 14, 197-214. (f) Madsen, F. B.;
Daugaard, A. E.; Hvilsted, S.; Skov, A. L., The Current State of
Silicone-Based Dielectric Elastomer Transducers. Macromol.
Rapid Commun. 2016, 37, 378-413.
(a) Khan, A.; Kaiser, C.; Hecht, S., Prototype of a Photoswitchable
Foldamer. Angew. Chem. Int. Ed. 2006, 45, 1878-1881. (b) Bléger,
D.; Hecht, S., Visible-Light-Activated Molecular Switches. An-
gew. Chem., Int. Ed. 2015, 54, 11338-11349. (c) Bandara, H. M.
D.; Burdette, S. C. Photoisomerization in Different Classes of Az-
obenzene. Chem. Soc. Rev. 2012, 41, 1809-1825. (d) Irie, M., Dia-
rylethenes for Memories and Switches. Chem. Rev. 2000, 100,
1685-1716. (e) van Dijken, D. J.; Kovaříček, P.; Ihrig, S. P.; Hecht,
S., Acylhydrazones as Widely Tunable Photoswitches. J. Am.
Chem. Soc. 2015, 137 (47), 14982-14991. (f) Tatum, L. A.; Su, X.;
Aprahamian, I., Simple Hydrazone Building Blocks for Compli-
cated Functional Materials. Acc. Chem. Res. 2014, 47, 2141-2149.
(g) Su, X.; Aprahamian, I., Hydrazone-based switches, metallo-as-
semblies and sensors. Chem. Soc. Rev. 2014, 43, 1963-1981.
Dolain, C.; Maurizot, V.; Huc, I., Protonation-induced transition
between two distinct helical conformations of a synthetic oligomer
2740.
1
2
3
4
5
6
7
8
6.
7.
8.
Knipe, P. C.; Thompson, S.; Hamilton, A. D., Ion-mediated con-
formational switches. Chem. Sci. 2015, 6, 1630-1639.
Ghosh, S.; Ramakrishnan, S., Small-molecule-induced folding of a
synthetic polymer. Angew. Chem., Int. Ed. 2005, 44, 5441-5447.
For a review of approaches to controlling foldamer conformation,
see: Barboiu, M.; Stadler, A.-M.; Lehn, J.-M., Controlled Folding,
Motional, and Constitutional Dynamic Processes of Polyheterocy-
clic Molecular Strands. Angew. Chem., Int. Ed. 2016, 55, 4130-
4154.
9.
For energy profiles of representative derivatives of 1 and 2 (R = o-
methoxyphenyl), see Supporting Information.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10. For representative examples of meso-helical architectures found in
the literature, see (a) Blay, G.; Fernandez, I.; Pedro, J. R.; Ruiz-
Garcia, R.; Munoz, M. C.; Cano, J.; Carrasco, R., A hydrogen-
bonded supramolecular meso-helix. Eur. J. Org. Chem. 2003,
1627-1630. (b) Maurizot, V.; Dolain, C.; Leydet, Y.; Leger, J.-M.;
Guionneau, P.; Huc, I., Design of an Inversion Center between
Two Helical Segments. J. Am. Chem. Soc. 2004, 126, 10049-
10052. (c) Xiao, D.-R.; Li, Y.-G.; Wang, E.-B.; Fan, L.-L.; An, H.-
Y.; Su, Z.-M.; Xu, L., Exceptional self-penetrating networks con-
taining unprecedented quintuple-stranded molecular braid, 9-fold
meso helices, and 17-fold interwoven helices. Inorg Chem 2007,
46, 4158-4166. (d) Hu, H.-Y.; Xiang, J.-F.; Chen, C.-F., Confor-
mationally constrained aromatic oligoamide foldamers with super-
secondary structure motifs. Org. Biomol. Chem. 2009, 7, 2534-
2539. (e) Wechsel, R.; Raftery, J.; Cavagnat, D.; Guichard, G.;
Clayden, J., The meso Helix: Symmetry and Symmetry-Breaking
in Dynamic Oligourea Foldamers with Reversible Hydrogen-Bond
Polarity. Angew. Chem., Int. Ed. 2016, 55, 9657-9661.
11. By contrast, the analogous N,N′-diacetyl derivative of 10 can adopt
both the centrosymmetrical and the C2 symmetrical conformations,
which differ by only 0.2 kcal/mol in energy. See Supporting Infor-
mation.
12. (a) Delsuc, N.; Kawanami, T.; Lefeuvre, J.; Shundo, A.; Ihara, H.;
Takafuji, M.; Huc, I., Kinetics of helix-handedness inversion: fold-
ing and unfolding in aromatic amide oligomers. ChemPhysChem
2008, 9, 1882-1890. (b) Gasparro, F. P.; Kolodny, N. H., NMR de-
termination of the rotational barrier in N,N-dimethylacetamide. A
physical chemistry experiment. J. Chem. Educ. 1977, 54, 258-261.
13. For cyclic voltammetry data of 1a (R = n-butyl), see Supporting
Information.
3.
4.
5.
ACS Paragon Plus Environment