C O M M U N I C A T I O N S
Table 2. Reaction of Borylmagnesium Bromide 3 or Boryllithium 2
with Benzaldehyde (yields are based on the amount of 1)
Scientists (B) (18750027) from MEXT, Japan, and by Takeda Phar-
maceutical Company Award in Synthetic Organic Chemistry, Japan.
Supporting Information Available: All experimental procedures,
spectroscopic data of new compounds, and CIF files of 3-5 and 7.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Science of Synthesis; Kaufmann, D. E., Matteson, D. S., Eds.; Georg
Thieme Verlag: Stuttgart, New York, 2005; Vol. 6.
(2) (a) Brown, H. C.; Rao, B. C. S. J. Am. Chem. Soc. 1956, 78, 2582-2588.
(b) Brown, H. C. Hydroboration; Wiley-Interscience: New York, 1962.
(c) Suzuki, A.; Dhillon, R. S. Top. Curr. Chem. 1986, 130, 23-88.
(3) Ishihara, K. Achiral and Chiral B(III) Lewis Acids. In Lewis Acids in
Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim, Ger-
many, 2000; Vol. 1, pp 89-190.
PhCHO
run
reactant
(equiv)
7 (%)a
8 (%)a
6 (%)a
9 (%)b
10 (%)a
(4) Kim, B. M.; Williams, S. F.; Masamune, S. The Aldol Reaction: Group
III Enolates. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.;
Pergamon: Oxford, 1991; Vol. 2, pp 239-275.
1
2
3
4
5
3
3
3
2
2
1
2
3
1
3
18
34
22
0
18
24
40
0
56
32
16
6
27
47
55
0
0
0
0
81
0
(5) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483. (b)
Miyaura, N. Organoboron Compounds. In Cross-Coupling Reactions: A
Practical Guide (Topics in Current Chemistry), 2002; Vol. 219, pp 11-
59. (c) Miyaura, N. Metal-Catalyzed Cross-Coupling Reactions of
Organoboron Compounds with Organic Halides. In Metal-Catalyzed
Cross-Coupling Reactions, 2nd ed.; de Meijiere, A., Diederich, F., Eds.;
Wiley-VCH: Weinheim, Germany, 2004; Vol. I, pp 41-123.
(6) No¨th, H. Product Subclass 4: Metalloboranes. In Science of Synthesis;
Kaufmann, D. E., Matteson, D. S., Eds.; Georg Thieme Verlag: Stuttgart,
New York, 2005; Vol. 6, pp 139-178.
0
51
10
50
a 1H NMR yield. b GC yield.
Table 3. Properties of Acylborane 7 with a Reference
Benzophenone and ORTEP Drawing of 7 (50% Thermal
Ellipsoids, Hydrogen Atoms were Omitted for Clarity)
(7) (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000,
41, 6821-6825. (b) He, X. M.; Hartwig, J. F. Organometallics 1996, 15,
400-407. (c) Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000,
982-983. (d) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet.
Chem. 2001, 625, 47-53. (e) Ito, H.; Kawakami, C.; Sawamura, M. J.
Am. Chem. Soc. 2005, 127, 16034-16035. (f) Laitar, D. S.; Mueller, P.;
Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196-17197. (g) Zhao, H.;
Lin, Z.; Marder, T. B. J. Am. Chem. Soc. 2006, 128, 15637-15643.
(8) (a) Parsons, T. D.; Self, J. M.; Schaad, L. H. J. Am. Chem. Soc. 1967, 89,
3446-3448. (b) Gragg, B. R.; Ryschkewitsch, G. E. Inorg. Chem. 1976,
15, 1209-1212. (c) Blumenthal, A.; Bissinger, P.; Schmidbaur, H. J.
Organomet. Chem. 1993, 462, 107-110. (d) Imamoto, T.; Morishita, H.
J. Am. Chem. Soc. 2000, 122, 6329-6330.
benzaldehyde probably via a six-membered ring transition state (see
picture) as was reported for the magnesium-Oppenauer oxidation.14
It is noteworthy that no borylbenzylalcohol 1010 was formed by
the reaction of 3 with benzaldehyde (runs 1-3) in sharp contrast
to the fact that 10 was obtained in 81% yield by the reaction of
boryllithium 2 with 1 equiv of benzaldehyde (run 4). Addition of
a second equivalent of benzaldehyde to 2 led to the intermolecular
hydride transfer to form 8 (run 5) accompanied with the formation
of 9. Thus, the counter metal cation alters the reactivity of
R-borylbenzyloxide.15
Benzoylborane 7 is the first example of a fully characterized
acylborane.16 Alternatively, we could also synthesize 7 in a higher
yield by the reaction of boryllithium 2 with benzoyl chloride. The
σ-donor ability of the diaminoboryl substituent to the carbonyl group
is indicated by (i) long CdO bond length in its X-ray structure,17
(ii) IR carbonyl absorption shifted to lower energy,18 and (iii) lower-
field shifted 13C NMR peak (broadened by a quadrupolar 11B
nucleus) when compared to that of benzophenone (Table 3). The
tendency is common to benzoylsilanes reported in the literature.19
In the solid state, the benzoyl plane was not coplanar with the boron
plane (N-B-CdO torsion ) 50.0(3)°).
(9) (a) Grignard, V. Compt. Rend. 1900, 130, 1322. (b) Handbook of Grignard
Reagents; Silverman, G. S., Rakita, P. E., Eds.; Dekker: New York, 1996.
(10) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113-115.
(11) Exclude boron-containing inorganics such as superconducting MgB2.
See: Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu,
J. Nature 2001, 410, 63-64. Several borane-magnesium complexes
having multicentered B-Mg bonds were reported. (a) Denton, D. L.;
Clayton, W. R.; Mangion, M.; Shore, S. G.; Meyers, E. A. Inorg. Chem.
1976, 15, 541-548. (b) Hosmane, N. S.; Zhu, D.; McDonald, J. E.; Zhang,
H.; Maguire, J. A.; Gray, T. G.; Helfert, S. C. J. Am. Chem. Soc. 1995,
117, 12362-12363. (c) Hosmane, N. S.; Zhang, H.; Wang, Y.; Lu, K.-J.;
Thomas, C. J.; Ezhova, M. B.; Helfert, S. C.; Collins, J. D.; Maguire, J.
A.; Gray, T. G.; Baumann, F.; Kaim, W. Organometallics 1996, 15, 2425-
2427. (d) Hosmane, N. S.; Zhu, D.; McDonald, J. E.; Zhang, H.; Maguire,
J. A.; Gray, T. G.; Helfert, S. C. Organometallics 1998, 17, 1426-1437.
(e) Hosmane, N. S.; Zhu, D.; Zhang, H.; Oki, A. R.; Maguire, J. A.
Organometallics 1998, 17, 3196-3203. (f) Zheng, C.; Wang, J. Q.;
Maguire, J. A.; Hosmane, N. S. Main Group Met. Chem. 1999, 22, 361-
366. (g) Hosmane, N. S.; Zhang, H.; Maguire, J. A.; Wang, Y.; Demissie,
T.; Colacot, T. J.; Ezhova, M. B.; Lu, K.-J.; Zhu, D.; Gray, T. G.; Helfert,
S. C.; Hosmane, S. N.; Collins, J. D.; Baumann, F.; Kaim, W.; Lipscomb,
W. N. Organometallics 2000, 19, 497-508.
(12) Emsley, J. The Elements, 3rd ed.; Oxford University Press: New York,
1998.
(13) DelBene, J. E.; Elguero, J.; Alkorta, I.; Yanez, M.; Mo, O. J. Phys. Chem.
A 2007, 111, 419-421.
(14) (a) Meerwein, H.; Schmidt, R. Liebigs Ann. Chem. 1925, 444, 221-238.
(b) Byrne, B.; Karras, M. Tetrahedron Lett. 1987, 28, 769-772. (c)
Kloetzing, R. J.; Krasovskiy, A.; Knochel, P. Chem.sEur. J. 2007, 13,
215-227.
In conclusion, the reaction of boryllithium 2 with 1.0 or 0.5 equiv
of MgBr2‚OEt2 provided borylmagnesium bromides 3 and 4 or bis-
(boryl)magnesium 5. Structures of 3, 4, and 5 in the crystals and
solutions indicated the ionic character of the B-Mg bonds. The
reactivity of borylmagnesium 3 with benzaldehyde was different
from that of boryllithium 2. Benzoylborane 7 was fully characterized
as the first acylborane. Further studies on reactivity of borylmag-
nesiums 3-5 and benzoylborane 7 are now in progress.
(15) Similar difference in reactivity between magnesium alkoxide and lithium
alkoxide has been observed in literature. See: (a) Linghu, X.; Satterfield,
A. D.; Johnson, J. S. J. Am. Chem. Soc. 2006, 128, 9302-9303. (b)
Schulze, V.; Nell, P. G.; Burton, A.; Hoffmann, R. W. J. Org. Chem.
2003, 68, 4546-4548. (c) Screttas, C. G.; Steele, B. R. J. Org. Chem.
1988, 53, 5151-5153.
(16) Gu¨nter, S.; No¨th, H. Chem. Ber. 1968, 101, 2502-2505.
(17) The structure was deposited to Cambridge Crystallographic Data Centre
(CCDC-245188) as private communication (2004) by Coppens, P. and
Moncol, J.
Advanced Industrial Science and Technology, 2007/03/06.
(19) (a) Brook, A. G.; Abdesaken, F.; Gutekunst, G.; Plavac, N. Organome-
tallics 1982, 1, 994-998. (b) Picard, J. P.; Calas, R.; Dunogues, J.; Duffaut,
N.; Gerval, J.; Lapouyade, P. J. Org. Chem. 1979, 44, 420-424.
Acknowledgment. This work was supported by Grant-in-Aid
for Scientific Research on Priority Areas (No. 17065005, “Advanced
Molecular Transformations of Carbon Resources”) and for Young
JA073037T
9
J. AM. CHEM. SOC. VOL. 129, NO. 31, 2007 9571