2118
K. Hiroya et al. / Tetrahedron Letters 50 (2009) 2115–2118
obtained from the reaction of 13a with MCPBA in methanol. This
product 16 was then converted to the corresponding sulfides 17a
and 17b (2:1) by reaction with Sc(OTf)3 and thiophenol.13 Sulfide
17a was finally oxidized by MCPBA to afford sulfone 18 in quanti-
tative yield (Scheme 4).
In conclusion, we successfully synthesized the core ring system
of awajanomycin in seven steps from 2b. Synthesis of 25 in an opti-
cally active form and total synthesis of awajanomycin are under-
way in our laboratory.
Installation of the methyl group at the C6-position proved more
challenging. Neither methyl cuprate (Me2CuLi–BF3) nor the higher-
order cuprate [Me2Cu(CN)Li2–BF3] did produce the desired product
19 from compound 16.14 Reaction of either sulfide 17a or sulfone
18 with the methyl anion equivalents [Me2Zn–Zn(OTf)2,15
Me2Zn–AgOTf, Me2Cu(CN)Li2–BF3,14 or MeMgBr–ZnCl216] did not
provide satisfactory results, and only recovery or decomposition
of the starting material was observed (Scheme 4).
References and notes
1. (a) Pearson, M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J. Eur. J. Org.
Chem. 2005, 2159–2191; (b) Buffat, M. G. P. Tetrahedron 2004, 60, 1701–1729;
(c) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron
2003, 59, 2953–2989.
2. Recent examples of the reaction of pyridinium salts, see: (a) Rudler, H.; Parlier,
A.; Sandoval-Chavez, C.; Herson, P.; Daran, J.-C. Angew. Chem., Int. Ed. 2008, 47,
6843–6846; (b) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007, 129,
9300–9301; (c) Minato, D.; Imai, M.; Kanda, Y.; Onomura, O.; Matsumura, Y.
Tetrahedron Lett. 2006, 47, 5485–5488; (d) Kiselyov, A. S. Chem. Soc. Rev. 2005,
34, 1031–1037; (e) Yamada, S.; Morita, C. J. Am. Chem. Soc. 2002, 124, 8184–
8185; (f) Rudler, H.; Denise, B.; Parlier, A.; Daran, J.-C. Chem. Commun. 2002,
940–941; (g) Charette, A.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel, J. J.
Am. Chem. Soc. 2001, 123, 11829–11830; Selected examples for the reaction of
dihydropyridine derivatives, see: (h) Krow, G. R.; Huang, Q.; Szczepanski, S. W.;
Hausheer, F. H.; Carroll, P. J. J. Org. Chem. 2007, 72, 3458–3466; (i) Davis, F. A.;
Xu, H.; Zhang, J. J. Org. Chem. 2007, 72, 2046–2052; (j) Sales, M.; Charette, A.
Org. Lett. 2005, 7, 5773–5776; (k) Lemire, A.; Grenon, M.; Pourashraf, M.;
Charette, A. Org. Lett. 2004, 6, 3517–3520.
3. (a) McCall, W. S.; Grillo, T. A.; Comins, D. L. Org. Lett. 2008, 10, 3255–3257. and
references cited therein; (b) Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 11808–11809; (c) Kuethe, J.
T.; Comins, D. L. J. Org. Chem. 2004, 69, 5219–5231; (d) Comins, D. L.; Flup, A. B.
Tetrahedron Lett. 2001, 42, 6839–6841; (e) Comins, D. L.; Joseph, S. P.; Goehring,
R. R. J. Am. Chem. Soc. 1994, 116, 4719–4728.
4. (a) Chou, S.-S. P.; Wang, H.-C.; Chen, P.-W.; Yang, C.-H. Tetrahedron 2008, 64,
5291–6297; (b) Kipassa, N. T.; Okamura, H.; Kina, K.; Hamada, T.; Iwagawa, T.
Org. Lett. 2008, 10, 815–816; (c) Teysott, M.-L.; Lormier, A.-T.; Chataigner, I.;
Piettre, S. R. J. Org. Chem. 2007, 72, 2364–2373; (d) Okamura, H.; Nagaike, H.;
Kipassa, N. T.; Iwagawa, T.; Nakatani, M. Heterocycles 2006, 68, 2587–2594; (e)
Fujita, R.; Watanabe, K.; Ikeura, W.; Ohtaka, Y.; Hongo, H.; Harigaya, Y.;
Matsuzaki, H. Tetrahedron 2001, 57, 8841–8850; (f) Okamura, H.; Nagaike, H.;
Iwagawa, T.; Nakatani, M. Tetrahedron Lett. 2000, 41, 8317–8321; (g) Afarinkia,
K.; Vinader, V.; Nelson, T. D.; Posner, G. H. Tetrahedron 1992, 48, 9111–9171.
and references cited therein.
These disappointing results let us to focus on our second strat-
egy; Boc-carbamate 3b was selected as starting material. The
hydroxylation reaction of 3b was carried out under the above-de-
scribed conditions, and 13b was obtained as the sole product in
69% yield (Scheme 5). Alternatively, 13b could be prepared from
20, obtained by the reaction of 2b with TBS-ketene acetal catalyzed
by Me3Al without acidic workup,8 by reaction with 14 in the pres-
ence of KF and 18-crown-617 (overall yield of 55%). The stereose-
lective epoxidation of 13b was conducted by DMDO prepared
in situ18 and epoxide 21 was isolated as a single isomer in 54%
yield. The epoxide-opening reaction in 21 failed with either Me3Al
or methyl cuprate, even in the presence of an additive (e.g., BF3ÁOE-
14
t2,19a TMSOTf,19b H2O19c for the former reagent, or BF3ÁOEt2 for
the latter reagent) and the decomposition of 21 was observed in
these cases. This difficulty could be overcome by protection of
the C3-hydroxyl group. When TMS-ether 22 (prepared from 21
and TMSCN20) was reacted with excess Me3Al, the methyl group
could be installed in a regioselective and stereoselective manner,
and the desired alcohol 23 was obtained in 73% yield as a sole
product. The methyl group at C6 in 23 was assumed to be axial,
as unambiguous stereochemical assessment could not be obtained
at this point (see below). In this reaction, three steps may be in-
volved: (i) removal of Boc group with the action of Me3Al to pro-
duce A; (ii) Me3Al-coordinated epoxide opening by the lone pair
on the nitrogen atom to give iminium cation B; and (iii) incorpora-
tion of the methyl group in an intramolecular manner to B from an
axial direction (Scheme 5).
´
´
5. (a) Sosnicki, J. G. Tetrahedron Lett. 2006, 47, 6809–6812; (b) Sosnicki, J. G.
Tetrahedron Lett. 2005, 46, 4295–4298.
6. (a) Sasaki, Y.; Niida, A.; Tsuji, T.; Shigenaga, A.; Fujii, N.; Otaka, A. J. Org. Chem.
2006, 71, 4969–4979; (b) Niida, A.; Mizumoto, M.; Narumi, T.; Inokuchi, E.;
Oishi, S.; Ohno, H.; Otaka, A.; Kitaura, K.; Fujii, N. J. Org. Chem. 2006, 71, 4118–
4129; (c) Niida, A.; Tanigaki, H.; Inokuchi, E.; Sasaki, Y.; Oishi, S.; Ohno, H.;
Tamamura, H.; Wang, Z.; Peiper, S. C.; Kitaura, K.; Otaka, A.; Fujii, N. J. Org. Chem.
2006, 71, 3942–3951; (d) Amat, M.; Llor, N.; Huguet, M.; Molins, E.; Espinosa, E.;
Bosch, J. Org. Lett. 2001, 3, 3257–3260; (e) Brewster, A. G.; Broady, S.; Hughes,
M.; Moloney, M. G.; Woods, G. Org. Biomol. Chem. 2004, 2, 1800–1810.
7. (a) Hiroya, K.; Jouka, R.; Katoh, O.; Sakuma, T.; Anzai, M.; Sakamoto, T. Arkivoc
2003, viii, 232–246; (b) Hiroya, K.; Kawamoto, K.; Sakamoto, T. Synlett 2006,
2636–2640.
8. Hiroya, K.; Kawamoto, K.; Inamoto, K.; Sakamoto, T.; Doi, T., in preparation.
9. Jang, J.-H.; Kanoh, K.; Adachi, K.; Shizuri, Y. J. Nat. Prod. 2006, 69, 1358–1360.
10. In this Letter, the numbering of the atoms of awajanomycin (1) was done
following the IUPAC rules, which is different from the numbering written in
Ref. 9. IUPAC name for awajanomycin (1) is (E)-1-hydroxy-8-(3-hydroxyundec-
1-enyl)-4-methyl-6-oxa-3-azabicyclo[3.2.1]octane- 2,7-dione.
The hydroxyl group on C5 was inverted by an oxidation/reduc-
tion sequence to afford lactone 24 and recovered 23 in 39% and 15%
yields, respectively. The axial configuration of the methyl group on
C4 in 24 was determined by a NOESY spectrum. The 1H NMR and
13C NMR spectra of 25 (obtained by treatment of 24 with HF in ace-
tonitrile at 0 °C) were identified primarily from the reported val-
ues.9 We thereby furnished the synthesis of a core ring system of
awajanomycin (Table 1).
11. Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A. Org. Synth. Coll. 1993, 8, 546–550
(1988, 66, 203À207).
12. The stereochemistry of methoxy group in 16 could not be determined by either
1H NMR or NOESY spectrum.
Table 1
1H NMR and 13C NMR spectral data for 1 and 25 in DMSO-d6
13. Okitsu, O.; Suzuki, R.; Kobayashi, S. J. Org. Chem. 2001, 66, 809–823.
14. (a) Ibuka, T.; Yamamoto, Y. In Organocopper Reagents: A Practical Approach;
Taylor, R. J. K., Ed.; Oxford University Press: Oxford, 1994; pp 143–158; (b)
Ishibuchi, S.; Ikematsu, Y.; Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1991, 32,
3523–3526; (c) Wistrand, L.-G.; Skrinjar, M. Tetrahedron 1991, 47, 573–582; (d)
Lipshutz, B. H.; Ellsworth, E. L.; Siahaan, T. J. J. Am. Chem. Soc. 1988, 110, 4834–
4835; (e) Alexakis, A.; Jachiet, D.; Normant, J. F. Tetrahedron 1986, 42, 5607–
5619; (f) Lipshutz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. Tetrahedron
Lett. 1984, 25, 5959–5962.
15. (a) Lautens, M.; Hiebert, S.; Renaud, J.-L. J. Am. Chem. Soc. 2001, 123, 6834–
6839; (b) Lautens, M.; Hiebert, S.; Renaud, J.-L. Org. Lett. 2000, 2, 1971–1973.
16. (a) Takasu, K.; Ohsato, H.; Ihara, M. Org. Lett. 2003, 5, 3017–3020; (b) Huang, P.
Q.; Tang, X.; Chen, A. Q. Synth. Commun. 2000, 30, 2259–2268.
Carbon number
1H NMR d (multiplicity, J)
13C NMR d
1a
25b
1a
25b,c
1
2
—
—
—
—
77.1
165.9
—
51.6
79.6
172.5
43.7
18.1
—
75.8
165.1
—
50.9
78.6
171.9
38.4
17.6
—
3-NH
4
5
7
8.20 (s)
3.68 (d, 6.7)
4.64 (s)
8.21 (br s)
3.68 (m)
4.62 (t, 1.8)
—
2.93 (dd, 9.9 and 4.5)
1.19 (d, 6.9)
6.26 (s)
—
8
3.30 (d, 6.4)
1.22 (d, 6.7)
5.92 (d, 4.1)
C4-Me
C1-OH
17. Artamkina, G. A.; Kovalenko, S. V.; Beletskaya, I. V.; Reutov, O. A. J. Organomet.
Chem. 1987, 329, 139–150.
18. Murray, R. W.; Singh, M. Org. Synth. Coll. 1997, 9, 288–293 (1997, 74, 91À96).
19. (a) Fotsch, C. H.; Chamberlin, A. R. J. Org. Chem. 1991, 56, 4141–4147; (b)
Crawley, G. C.; Briggs, M. T. J. Org. Chem. 1995, 60, 4264–4267; (c) Miyazawa, M.;
Ishibashi, N.; Ohnuma, S.; Miyashita, M. Tetrahedron Lett. 1997, 38, 3419–3422.
20. Mai, K.; Patil, G. J. Org. Chem. 1986, 51, 3545–3548.
a
Values were reproduced from Ref.9 (750 MHz for 1H NMR and 250 MHz for 13C
NMR).
b
c
600 MHz for 1H NMR and 150 MHz for 13C NMR.
Assignment of 13C-signals was carried out using HMQC and HMBC spectra.