Communication
ChemComm
J.D. is supported by National Natural Science Foundation of
China (21174107 and 21374080), Shanghai 1000 Plan, the
Eastern Scholar program and the open fund for characteriza-
tion at Tongji University (0002014118).
Notes and references
1 C. Li, J. Hu, J. Yin and S. Liu, Macromolecules, 2009, 42, 5007–5016.
2 L. Fan, H. Lu, K. D. Zou, J. Chen and J. Z. Du, Chem. Commun., 2013,
49, 11521–11523.
3 S. Abbas, Z. B. Li, H. Hassan and T. P. Lodge, Macromolecules, 2007,
40, 4048–4052.
4 X. Jiang, C. Feng, G. L. Lu and X. Y. Huang, ACS Macro Lett., 2014, 3,
1121–1125.
Fig. 4 Size increase and corresponding interpretation of cross-linked
5 L. Yu, W. X. Fu and Z. B. Li, Soft Matter, 2015, 11, 545–550.
6 S. Dai, P. Ravi and K. C. Tam, Soft Matter, 2009, 5, 2513–2533.
7 J. Z. Du and R. K. O’Reilly, Soft Matter, 2009, 5, 3544–3561.
8 R. X. Liu, M. Fraylich and B. R. Saunders, Colloid Polym. Sci., 2009,
287, 627–643.
polymer micelles upon step-by-step heating to 45 1C. Cpolymer
=
1.0 mg mLÀ1. Blue: PEO; yellow: PNIPAM; green: PCMA; purple: ‘fuzzy’
core of the micelle composed of hydrophilic PNIPAM and hydrophobic
PCMA.
9 J. F. Lutz, Adv. Mater., 2011, 23, 2237–2243.
10 Y. Li, B. S. Lokitz and C. L. McCormick, Angew. Chem., Int. Ed., 2006,
45, 5792–5795.
Fig. S12 in the ESI†). The volume decrease introduced by inter/ 11 M. Pernia Leal, A. Torti, A. Riedinger, R. La Fleur, D. Petti, R. Cingolani,
R. Bertacco and T. Pellegrino, ACS Nano, 2012, 6, 10535–10545.
12 Y. Li, B. S. Lokitz, S. P. Armes and C. L. McCormick, Macromolecules,
intra chain dimerization of coumarin in the micelle core was
around 39.5%. On this occasion, the internal PNIPAM micelle
2006, 39, 2726–2728.
core became tighter and the chain movement was, to some 13 X. R. Chen, X. B. Ding, Z. H. Zheng and Y. X. Peng, New J. Chem.,
2006, 30, 577–582.
14 M. I. Gibson and R. K. O’Reilly, Chem. Soc. Rev., 2013, 42, 7204–7213.
15 C. Zhou, M. A. Hillmyer and T. P. Lodge, Macromolecules, 2011, 44,
extent, restricted. Similarly, a step-by-step heating process was
applied to the cross-linked micelle solution. Fig. 4 shows the
size increase process upon heating. Started from 29 1C, the
volume phase transition process lasted to 33 1C and reached a
final Dh of 64.5 nm at 45 1C. Above 35 1C, the diameter
decreased continuously, corresponding to the collapse and
shrinkage of PNIPAM chains inside the PEO coronas. The
reversibility of this process was also conducted for 3 cycles
1635–1641.
16 A. Sundararaman, T. Stephan and R. B. Grubbs, J. Am. Chem. Soc.,
2008, 130, 12264–12265.
17 A. O. Moughton and R. K. O’Reilly, Chem. Commun., 2010, 46,
1091–1093.
18 K. Wei, L. Su, G. Chen and M. Jiang, Polymer, 2011, 52, 3647–3654.
19 A. J. Convertine, B. S. Lokitz, Y. Vasileva, L. J. Myrick, C. W. Scales,
A. B. Lowe and C. L. McCormick, Macromolecules, 2006, 39, 1724–1730.
(Fig. S13, ESI†). The differences between the final sizes may be 20 Y. Li, A. E. Smith, B. S. Lokitz and C. L. McCormick, Macromolecules,
2007, 40, 8524–8526.
21 S. Sun, J. Hu, H. Tang and P. Wu, Phys. Chem. Chem. Phys., 2011, 13,
attributed to the cross-linking procedure, which restricted the
motion of block copolymer chains. To further uncover the
5061–5067.
effects of the UV cross-linking process and reveal the differ- 22 Z. Wang, H. Lai and P. Wu, Soft Matter, 2012, 8, 11644–11653.
23 S. Sun, H. Wang and P. Wu, Soft Matter, 2013, 9, 2878–2888.
24 J. Ye, J. Xu, J. Hu, X. Wang, G. Zhang, S. Liu and C. Wu, Macro-
ences between the morphological changes, TEM studies were
carried out as well. When the micelles were firstly photo-cross-
molecules, 2008, 41, 4416–4422.
linked at 25 1C and then heated to 45 1C, no obvious fusion 25 S. M. Loverde, A. V. Ermoshkin and M. O. De La Cruz, J. Polym. Sci.,
Part B: Polym. Phys., 2005, 43, 796–804.
26 H. Y. Guo, X. Q. Qiu and J. Zhou, J. Chem. Phys., 2013, 139, 084907.
27 J. He, X. Tong, L. Tremblay and Y. Zhao, Macromolecules, 2009, 42,
process was observed by TEM (Fig. 3C). The higher temperature
only provides the cross-linked micelles with more chance to
aggregate but the cross-linked structure limited the chain
movement of PNIPAM. Therefore, only the outer interior of
PEO corona is mixed (Scheme 1 and Fig. 3C).
7267–7270.
28 R. Cheng, F. H. Meng, S. B. Ma, H. F. Xu, H. Y. Liu, X. B. Jing and
Z. Y. Zhong, J. Mater. Chem., 2011, 21, 19013–19020.
29 J. He, B. Yan, L. Tremblay and Y. Zhao, Langmuir, 2011, 27, 436–444.
In summary, a photo-cross-linkable and thermo-responsive 30 B. Peng, Y. Liu, Y. Shi, Z. Li and Y. Chen, Soft Matter, 2012, 8,
12002–12008.
diblock copolymer was synthesized to disclose the nature of
PNIPAM-based thermal responsiveness of micelles. The facile
31 B. Peng and Y. M. Chen, Macromol. Rapid Commun., 2013, 34,
1169–1173.
in situ photo-cross-linking at desired temperatures facilitates 32 X. Xu, J. D. Flores and C. L. McCormick, Macromolecules, 2011, 44,
1327–1334.
conventional TEM studies on the thermally responsive nano-
structures, revealing that the fusion of micelles is a dominant
33 X. Xu, A. E. Smith, S. E. Kirkland and C. L. McCormick, Macro-
molecules, 2008, 41, 8429–8435.
behaviour when heating the PNIPAM-based micelles step-by- 34 Y. Q. Zhu, F. Y. K. Wang, C. Zhang and J. Z. Du, ACS Nano, 2014, 8,
6644–6654.
step at higher concentrations. In contrast, the aggregation
occurs when quickly heating the micelles, or cross-linking the
35 Y. Q. Zhu, L. Fan, B. Yang and J. Z. Du, ACS Nano, 2014, 8,
5022–5031.
micelles before heating. These observations provide us with 36 Y. Q. Zhu, L. Liu and J. Z. Du, Macromolecules, 2013, 46, 194–203.
37 T. T. Liu, W. Tian, Y. Q. Zhu, Y. Bai, H. X. Yan and J. Z. Du, Polym.
Chem., 2014, 5, 5077–5088.
38 J. Z. Du, H. Willcock, J. P. Patterson, I. Portman and R. K. O’Reilly,
more insights when designing thermally responsive nano-
vehicles, especially for popular drug carriers such as polymer
micelles.
Small, 2011, 7, 2070–2080.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 11198--11201 | 11201