M. Choudhary et al.
[3] J. Huang, R. B. Kaner, J. Am. Chem. Soc. 2004, 126, 851.
[4] C. G. Wu, T. Bein, Science 1994, 264, 1757.
spectrometer and a Gatan imaging filter attached to the microscope
were used to determine the chemical composition of the samples.
SEM studies were undertaken in an FEI FEG Nova 600 Nanolab at 5 kV
instrument. As a precaution to prevent possible charging, the samples
were sputter coated with a thin uniform layer of Au–Pd prior to viewing.
For UV–visible spectra analysis, a small portion of the solid
sample was dissolved in methanol and scanned within the range
300–700 nm using a Varian CARY 1E digital spectrophotometer.
Raman spectra were acquired using the green (514.5 nm) line
of an argon ion laser as the excitation source. Light dispersion
was carried out using the single spectrograph stage of a Jobin-
Yvon T64000 Raman spectrometer. Power at the sample was kept
very low (0.73 mW) and the laser beam diameter at the sample
was ~1 μm. IR spectra in the region 800–1700 cmÀ1 were
obtained from a PerkinElmer 2000 FT-IR spectrometer operating
at a resolution of 4 cmÀ1. The sample was deposited in the form
of a thin film on a sodium chloride disk. X-ray photoelectron
spectra were collected in an ultra-high-vacuum chamber at-
tached to a Physical Electronics 560 ESCA/SAM instrument.
[5] J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc. 2003, 125, 314.
[6] M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Science 1991, 252, 1412.
[7] S. Shukla, A. Bharadvaja, A. Tiwari, G. Parashar, G. Dubey, Adv. Mat.
Lett. 2010, 1, 129.
[8] A. Tiwari, R. Kumar, M. Prabaharan, R. Pandey, P. Kumari, A.
Chaturvedi, A. Mishra, Polym. Adv. Technol. 2010, 21, 615.
[9] A. Tiwari, V. Sen, S. R. Dhakate, A. P. Mishra, V. Singh, Polym. Adv.
Technol. 2008, 19, 909.
[10] K. Mallick, M. Witcomb, M. Scurrell, J. Macromol. Sci: Pure Appl. Chem.
2006, 43, 1469.
[11] K. Mallick, M. J. Witcomb, M. S. Scurrell, A. M. Strydom, Gold Bull.
2008, 41, 246.
[12] K. Mallick, M. J. Witcomb, A. Dinsmore, M. S. Scurrell, J. Polym. Res.
2006, 13, 397.
[13] K. Mallick, M. Witcomb, M. Scurrell, A. Strydom, J. Phys. D: Appl. Phys.
2009, 42, 095409.
[14] J. C. Chiang, A. G. MacDiarmid, Synth. Metals 1986, 13, 193.
[15] D. W. DeBerry, J. Electrochem. Soc. 1985, 132, 1022.
[16] K. Mallick, M. J. Witcomb, A. Dinsmore, M. S. Scurrell, Macromol. Rapid
Commun. 2005, 26, 232.
[17] K. Mallick, M. J. Witcomb, A. Dinsmore, M. S. Scurrell, Langmuir
2005, 21, 7964.
In situ synthesis of a Pd–poly(3-AQ) composite
[18] K. Mallick, M. J. Witcomb, M. S. Scurrell, Eur. Phys. J. E 2006, 19, 149.
[19] K. Mallick, M. J. Witcomb, M. S. Scurrell, Eur. Phys. J. E 2006, 20, 347.
[20] K. Mallick, M. J. Witcomb, M. S. Scurrell, Phys. Status Solidi A
2007, 204, 2263.
In a typical experiment 0.35 g 3-AQ was added to 15 ml tolu-
ene in a 50 ml conical flask. The flask was then shaking manu-
ally with appropriate precautions. Palladium acetate (Pd(OAc)2)
in toluene (10 mL) having a concentration of 2.0 × 10À3
M
[21] S. Scalzullo, K. Mondal, M. J. Witcomb, A. Deshmukh, M. S. Scurrell, K.
was added slowly dropwise to the aminoquinoline–toluene
system. A greenish-yellow color developed at the bottom of
the conical flask. The solution was kept under static conditions
for a further 10 min. A precipitation slowly formed at the bot-
tom of the flask. The material was then allowed to settle for an
additional 15 min. The whole process was carried out at room
temperature (~25°C). The amount of product obtained after the
reaction between 3-AQ and Pd(OAc)2 was 0.31 g. Subsequently,
the colloidal precipitation was taken from the bottom of the
flask and pipetted onto lacey, carbon-coated, copper TEM grids
for SEM and TEM analysis. The rest of the solution was filtered,
washed with distilled water and kept under vacuum overnight.
A small portion of the dried powder was used for Raman, IR
and UV–visible analysis. The remaining portion was used for
the study of the catalytic properties of the materials.
Mallick, Nanotechnology 2008, 19, 075708.
[22] K. Mallick, M. J. Witcomb, R. Erasmus, A. Strydom, J. Appl. Phys. 2009,
106, 074303.
[23] K. Mallick, M. J. Witcomb, A. Dinsmore, M. S. Scurrell, J. Mater. Sci.
2006, 421, 1733.
[24] K. Mallick, M. J. Witcomb, M. S. Scurrell, A. Strydom, Chem. Phys. Lett.
2010, 494, 232.
[25] X. Sun, S. Dong, E. Wang, J. Am. Chem. Soc. 2005, 127, 13102.
[26] M. Łapkowski, K. Berrada, S. Quillard, G. Louarn, S. Lefrant, A. Proń,
Macromolecules 1995, 28, 1233.
[27] G. Louarn, M. Łapkowski, S. Quillard, A. Proń, J. P. Buisson, S. Lefrant,
J. Phys. Chem. 1996, 100, 6998.
[28] J. Stejskal, M. Trchová, J. Prokeš, I. Sapurina, Chem. Mater. 2001, 13, 4083.
[29] E. T. Kang, K. G. Neoh, K. L. Tan, Prog. Polym. Sci. 1998, 23, 277.
[30] Y. Wang, Z. Liu, B. Han, Z. Sun, Y. Huang, G. Yang, Langmuir 2005, 21, 833.
[31] X. Sun, S. Dong, E. Wang, Chem. Commun. 2004, 1188.
[32] X. Chen, Y. Hou, H. Wang, Y. Cao, J. He, J. Phys. Chem. C 2008, 112, 8172.
[33] J. P. Mathew, M. Srinivasan, Eur. Polym. J. 1995, 31, 835.
[34] A. K. Zharmagambetova, V. A. Golodov, Y. P. Saltykov, J. Mol. Catal.
1989, 55, 406.
Procedure for Suzuki coupling reactions catalyzed by the Pd–poly(3-AQ)
composite
[35] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
[36] A. Molnár, Chem. Rev. 2011, 111, 2251.
In a typical experiment, aryl halide (1.0 mmol), phenylboronic
acid (1.5 mol), K2CO3 (1.5 mmol) and the Pd–poly(3-AQ) compos-
ite catalyst (required amount) were added to toluene (5 ml) in a
small round-bottom flask having a magnetic stirring bar. The
reaction mixture was placed on an oil bath at 80°C and stirred
for 8 h. The reaction was monitored by thin-layer chromatogra-
phy. Subsequently, the mixture was extracted with ethyl acetate
and diluted with Et2O, filtered through a pad of silica gel and
purified by flash chromatography on silica gel.
[37] D. Astruc, F. Lu, J. Ruiz Aranzaes, Angew. Chem. Int. Ed. 2005, 44, 7852.
[38] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J. M. Basset, V. Polshettiwar,
Chem. Soc. Rev. 2011, 40, 5181.
[39] R. Islam, M. Witcomb, M. Scurrell, E. Lingen, W. Otterlo, K. Mallick,
Catal. Sci. Technol. 2001, 1, 308.
[40] R. Islam, M. Witcomb, E. Lingen, M. Scurrell, W. Otterlo, K. Mallick,
J. Organomet. Chem. 2011, 696, 2206.
[41] B. Tao, D. Boykin, J. Org. Chem. 2004, 69, 4330.
[42] D. Saha, R. Sen, T. Maity, S. Koner, Langmuir 2013, 29, 3140.
[43] L. Strimbu, J. Liu, A. E. Kaifer, Langmuir 2003, 19, 483.
[44] D. D. Das, A. Sayari, J. Catal. 2007, 246, 60.
[45] W. Han, C. Liu, Z. Jin, Adv. Synth. Catal. 2008, 350, 501.
[46] D. Saha, K. Chattopadhyay, B. C. Ranu, Tetrahedron Lett. 2009, 50,
1003.
References
[1] Z. Wei, Z. Zhang, M. Wan, Langmuir 2002, 18, 917.
[2] X. Sun, S. Dong, E. Wang, Chem. Commun. 2004, 1182.
[47] K. Mallick, M. Witcomb, M. Scurrell, Phys. Status Solidi (RRL) 2006, 1,
R1–R3.
wileyonlinelibrary.com/journal/aoc
Copyright © 2013 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2013, 27, 523–528