3974
W.-Y. Chen et al. / Tetrahedron Letters 51 (2010) 3972–3974
Table 2
6.88 (d, J = 8.0 Hz, 1H), 5.26 (q, J = 6.8 Hz, 1H), 4.77–4.73 (m, 1H),
4.49–4.47 (m, 1H), 4.41–4.37 (m, 1H), 3.94 (d, J = 7.2 Hz, 1H),
3.70 (s, 6H); 13C NMR (100 MHz, CDCl3): d 167.6, 167.5, 153.8,
129.2, 128.6, 122.1, 118.4, 117.6, 80.9, 64.5, 55.2, 53.04, 53.03,
35.9; Exact mass calcd for [C14H15NO7+H]: 310.2793, found
310.2788; The enantiomeric ratio was determined by HPLC on
Chiralpak AD-H column (10% 2-propanol/hexane, 1 mL/min),
tminor = 12.217 min, tmajor = 13.575 min.
Enantioselective Michael addition reaction of malonates to 3-nitro-2H-chromenesa
NO2
*
NO2
O
O
COOR
COOR
COOR
COOR
1b
*
+
X
Toluene, 0oC
X
only anti-product
2a-g
3a-b
4
Entry
2
R
Product
Time (h)
Yieldb (%)
eec (%)
Supplementary data
1
2
3
4
5
6
7
8
9
2a
2b
2c
2d
2e
2f
2g
2a
2c
2d
2f
Me (3a)
Me (3a)
Me (3a)
Me (3a)
Me (3a)
Me (3a)
Me (3a)
Bn (3b)
Bn (3b)
Bn (3b)
Bn (3b)
Bn (3b)
4aa
4ba
4ca
4da
4ea
4fa
4ga
4ab
4cb
4db
4fb
4gb
24
30
30
20
20
24
24
30
36
30
30
30
92
82
81
91
96
88
91
88
80
90
88
91
95
80
88
92
92
84
86
91
91
90
92
92
Supplementary data associated with this article can be found, in
References and notes
1. (a) Sibi, M.; Manyem, S. Tetrahedron 2000, 56, 8033; (b) Krause, N.; Hoffmann-
RÖder, A. Synthesis 2001, 171; (c) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem.
2002, 3221; (d) Christoffers, J.; Koripelly, G.; Rosiak, A.; RÖssle, M. Synthesis
2007, 1279; (e) Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688; (f)
Yu, Z. P.; Liu, X. H.; Zhou, L.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2009, 48,
5195; (g) Yang, X.; Zhou, X.; Lin, L. L.; Chang, L.; Liu, X. H.; Feng, X. M. Angew.
Chem., Int. Ed. 2008, 47, 7079.
10
11
12
2g
a
All reactions were performed with 0.5 mmol of 2, 0.6 mmol of 3, 5 mol % of
catalyst in 0.5 mL of toluene at 0 °C.
b
2. (a) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339; (b) Ono, N.;
Miyake, H.; Kamimura, A.; Hamamoto, I.; Tamura, R.; Kaji, A. Tetrahedron 1985,
41, 4013; (c) Lloyd, D. H.; Nichols, D. E. J. Org. Chem. 1986, 51, 4294; (d) Barrett,
A. G. M.; Spilling, C. D. Tetrahedron Lett. 1988, 29, 5733; (e) Beck, A. K.; Seebach,
D. Chem. Ber. 1991, 124, 2897; (f) Maeri, R. E.; Heinzer, J.; Seebach, D. Liebigs Ann.
1995, 1193; (g) Poupart, M. A.; Fazal, G.; Goulet, S.; Mar, L. T. J. Org. Chem. 1999,
64, 1356; (h) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org.Chem. 2002, 1877.
3. (a) Betancort, J. M.; Barbas, C. F., III Org. Lett. 2001, 3, 3737; (b) Okino, T.; Hoashi,
Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672; (c) Andrey, O.; Alexakis, A.;
Bernardinelli, G. Org. Lett. 2003, 5, 2559; (d) Enders, D.; Seki, A. Synlett 2002, 26;
(e) Cobb, A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004,
1808; (f) Hayashi, Y.; Gotoh, T.; Hayasji, T.; Shoji, M. Angew. Chem., Int. Ed. 2005,
44, 4212; (g) Ishii, T.; Fiujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc.
2004, 126, 9558; (h) Tsogoeva, S. B.; Yalalov, D. A.; Hateley, M. J.; Weckbecker,
C.; Huthmacher, K. Eur. J. Org. Chem. 2005, 4995; (i) McCooey, S. H.; Connon, S. J.
Angew. Chem., Int. Ed. 2005, 44, 6367; (j) Xu, Y.-M.; Zou, W.-B.; Sunden, H.;
Ibrahem, I.; Cordova, A. Adv. Synth. Catal. 2006, 348, 418; (k) Okino, T.; Hoashi,
Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119; (l)
Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366; (m)
Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Adv. Synth. Catal. 2006, 348, 826; (n)
Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44,
6576; (o) Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Org. Lett. 2007, 9,
923; (p) Wei, S.; Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Catal. Today 2007,
121, 151; (q) Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Org. Lett. 2005, 7, 4713;
(r) Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451; (s) Ye, J.; Dixon, D. J.;
Hynes, P. S. Chem. Commun. 2005, 4481; (t) Huang, H.; Jacobsen, E. N. J. Am.
Chem. Soc. 2006, 128, 7170.
Isolated yield.
c
Enantiomeric excess was determined by chiral HPLC analysis using Chiralcel
AD-H column.
NO2
NO2
CO2Me
CO2Me
*
*
O
O
OH
b
a
96%
92% ee
Cl
CHO
Cl
Cl
*
NH2.HCl
CO2H
NH2
*
*
O
O
c
d
CO2Me
*
86%
88%
CO2Me
[α] D24 = + 47.3
(c 0.68, MeOH)
Cl
Cl
Scheme 1. Asymmetric synthesis of chiral cyclo
Supplementary data for details). Reagents and conditions: (a) n-Bu4NCl/nitroeth-
anol; (b) dimethyl malonate, 1b, toluene; (c) NaBH4, NiCl2ꢂ6H2O; (d) 6 N HCl, reflux.
c
-amino butylic acid (see
4. (a) Ji, J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S. J.; Morton, H. E. J.
Am. Chem. Soc. 1999, 121, 10215; (b) Barnes, D. M.; Ji, J.; Fickes, M. G.; Fitzgerald,
M. A.; King, S. A.; Morton, H. E.; Plagge, F. A.; Preskill, M.; Wagaw, S. H.;
Wittenberger, S. J.; Zhang, J. J. Am. Chem. Soc. 2002, 124, 13097.
nickel complex 1b exhibited high stereoselectivity and catalytic
activity in the asymmetric Michael addition. The corresponding
Michael addition products were obtained in high yields and good
diastereo- and enantioselectivities. We believe that this method
could provide an efficient route for the preparation of chiral cyclo
5. (a) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417; (b) Hanessian, S.;
Pham, V. Org. Lett. 2000, 2, 2975; (c) Corey, E. J.; Zhang, F.-Y. Org. Lett. 2000, 2,
4257; (d) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 9022; (e)
Halland, N.; Hazell, R. G.; Jøgensen, K. A. J. Org. Chem. 2002, 67, 8331; (f) Wang, J.;
Li, H.; Zu, L.-S.; Wang, W. Adv. Synth. Catal. 2006, 348, 425; (g) Bakulya, B.; Varga,
S.; CsTmpa, A.; Ssos, T. Org. Lett. 2005, 7, 1967; (h) Wang, J.; Li, H.; Zu, L.-S.; Jiang,
W.; Xie, H.-X.; Duan, W.-H.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652; (i) Wu,
F.; Hong, R.; Khan, J.; Liu, X.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 4301; (j)
Wu, F.; Li, H.; Hong, R.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 947.
6. (a) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44, 4032; (b)
Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204; (c) Guerin, D. J.;
Miller, S. J. J. Am. Chem. Soc. 2002, 124, 2136.
c-amino butylic acid derivatives, and the availability of these com-
pounds may facilitate medicinal chemical studies in various fields.
Further work on applying this kind of chiral nickel complexes for
other organic transformations is in progress.
Typical procedure for asymmetric conjugate addition of 1,3-
dicarbonyl compounds 2 to 3-nitro-2H-chromenes 3: To a stirred
mixture of chiral nickel catalyst (5 mol %) and 3 (0.5 mmol) in tol-
uene (0.5 mL) was added 2 (0.6 mmol) at 0 °C, and the resulting
mixture was stirred for the amount of time indicated. Then, the
reaction mixture was concentrated, and the residue was purified
by column chromatography on silica gel to afford the desired prod-
7. Daniel, D.; Rene, R. Synthesis 1984, 348.
8. (a) Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583; (b) Fossy, J.
S.; Matsubara, R.; Kiyogara, H.; Kobayashi, S. Inorg. Chem. 2008, 47, 781; (c)
Seung, H. K.; Dae, Y. K. Bull. Korean Chem. Soc. 2009, 30, 1439; (d) Itoh, K.;
Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394; (e) Evans, D. A.; Seidel, D. J. Am.
Chem. Soc. 2005, 127, 9958; (f) Zheng, K.; Shi, J.; Liu, X.-H.; Feng, X.-M. J. Am.
Chem. Soc. 2008, 130, 15770; (g) Itoh, K.; Hasegawa, M.; Tanaka, J.; Kanemasa, S.
Org. Lett. 2005, 7, 979.
uct 4. Compound 4aa ½a D24
ꢁ
= +50.6 (c 0.33, DCM), 95%ee; 1H NMR
(400 MHz, CDCl3): d 7.20–7.16 (m, 2H), 6.96 (t, J = 7.4 Hz, 1H),