and k
equation on the experimental results at various temperature:
N
(T) have then been derived from the fitting of the above
References
1
2
3
C. Fittschen, H. Hippler and B. Viskolcz, Phys. Chem. Chem.
Phys., 2000, 2, 1677–1683.
R. Mereau, M.-T. Rayez, F. Caralp and J.-C. Rayez, Phys. Chem.
´
3
ꢂ1
k
3,0,He ¼ 3.2 ꢁ 10ꢂ8 exp(ꢂ35.9 kJ molꢂ1/RT) cm s
k3,N ¼ 1.1 ꢁ 10 exp(ꢂ53.6 kJ molꢂ1/RT) s
1
4
ꢂ1
Chem. Phys., 2000, 2, 3765.
A. C. Baldwin, J. R. Barker, D. M. Golden and D. G. Hendry,
J. Phys. Chem., 1977, 81, 2483.
L. Batt, Int. Rev. Phys. Chem., 1987, 6, 53.
J. Heicklen, J. Adv. Photochem., 1988, 14, 177.
R. Atkinson, Int. J. Chem. Kinet., 1997, 29, 99.
P. Devolder, J. Photochem. Photobiol., A, 2003, 157, 137.
J. J. Orlando, G. S. Tyndall and T. J. Wallington, Chem. Rev.,
The curves corresponding to these expressions are shown in
Fig. 6 together with the experimental values.
For convenient use in tropospheric conditions, the results
4
5
6
7
8
2
from the RRKM calculation in N bath gas have been adjusted
to yield the three Troe parameters as a function of temperature:
keeping the temperature dependence for k3,N and for Fc,3 from
the experiment, the best fit leads to
2
003, 103, 4657.
9
0
W. Deng, C. Wang, D. Katz, G. Gawinski, A. Davis and
T. Dibble, Chem. Phys. Lett., 2000, 330, 541–546.
C. Lotz and R. Zellner, Phys. Chem. Chem. Phys., 2001, 3,
k3,0,N2 ¼ 5.8 ꢁ 10ꢂ8 exp(ꢂ36.1 kJ molꢂ1/RT) cm sꢂ1
3
1
2
607–2613.
This allows an extrapolation to the experimental conditions of
the only other direct determination of k : at 293 K and 50 mbar
3
11 H. Hein, A. Hoffmann and R. Zellner, Ber. Bunsen-Ges. Phys.
Chem., 1998, 102, 1840–1849.
12 N. Meunier, J. F. Doussin, E. Chevallier, R. Duran-Jolibois, B.
Picquet-Varrault and P. Carlier, Phys. Chem. Chem. Phys., 2003,
1
1
3
ꢂ1
N2 Hein et al. found k3 ¼ (3.5 ꢀ 2) ꢁ 10
s
application of the above Troe parameters leads to k
while an
¼ 7.5 ꢁ
3
5, 4834–4839.
3
0 s under the same conditions. The agreement is not very
ꢂ1
1
good, probably due to difficulties in the indirect approach of
Hein et al. The attempt to explain the discrepancy with a lower
1
3
H. G. Libuda, O. Shestakov, J. Theloke and F. Zabel, Phys.
Chem. Chem. Phys., 2002, 4, 2579.
14 F. Caralp, P. Devolder, Ch. Fittschen, N. Gomez, H. Hippler, R.
Mereau, M. T. Rayez, F. Striebel and B. Viskolcz, Phys. Chem.
Chem. Phys., 1999, 1, 2935.
´
collision efficiency of N
.24 to bring together the two values, which is far too low.
With a low, but still reasonable b (N
) ¼ 0.15, the calculation
¼ 5.8 ꢁ 10 s : giving an uncertainty of
2
requires a b
c
(N
2
) ¼ 0.07 instead of
0
1
5
P. Devolder, Ch. Fittschen, A. Frenzel, H. Hippler, G.
Poskrebyshev, F. Striebel and B. Viskolcz, Phys. Chem. Chem.
Phys., 1999, 1, 675.
c
ꢂ1
2
3
returns k3
,293 K,N
2
3
0% on this value, the lower limit of our value is in agreement
16 J.-M. Avez, PhD Thesis, University of Lille, France, 1978.
17 C. Wang, L. G. Shemesh, W. Deng, M. D. Lilien and T. S. Dibble,
J. Chem. Phys. A, 1999, 103, 8207–8212.
with the upper limit of Hein et al.
1
1
8
9
P. Tarte, J. Chem. Phys., 1952, 20, 1570.
Conclusion
P. Devolder, A. Frenzel, K. Imrik and C. Fittschen, Int. J. Chem.
Kinet., 1999, 31(12), 860.
Program FALLOFF (1993) QCMP 119:W. Forst, QCPE Bull.,
In the present work the reactivity of 2-butoxy radicals has been
studied. Absolute rate constants for their reactions with NO,
O and their thermal decomposition have been measured as a
2
2
0
1
1
993, 13, 21.
2
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr,
R. E. Stratman, J. C. Burant, S. Dapprich, J. M. Millam, A. D.
Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G. A. Peterson, P. Y. Ayala,
Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G.
Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,
P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L.
Andres, C. Gonzales, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian98, Revision A.9, Gaussian, Inc., Pittsburgh PA,
function of temperature and He-pressure by the experimental
technique of laser photolysis/laser induced fluorescence. The
rate constants for the two bimolecular reactions have been
found in good agreement with earlier data. Our absolute
determination of the decomposition rate constant confirms
predictions based on theoretical methods. The falloff
behaviour has been interpreted by RRKM calculations. The
reaction has been found in the falloff region under atmospheric
conditions and Troe parameters with N
extracted for convenience using b (N ) ¼ 2b (He).
2
as bath gas are
c
2
c
1
998.
Acknowledgements
2
2
(a) A. D. J. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee,
W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
23 F. M. Mourtis and F. H. A. Rummens, and references herein,
The Laboratoire de Physicochimie des Processus de Combus-
tion is ‘‘Unite Mixte de Recherche de l’Universite de Lille 1
et du CNRS’’. The Centre d’Etudes et de Recherches Lasers
et Applications (CERLA) is supported by the Ministere charge
de la Recherche, the Region Nord-Pas de Calais and the Fonds
Europeen de Developpement Economique des Regions.
Fincancial support was provided by the ‘‘Region Nord-Pas-
´
´
Can. J. Chem., 1977, 55, 3007.
R. C. Reid and T. K. Sherwood, The properties of gases and
liquids, McGraw-Hill, New York, 2nd edn., 1987.
2
4
`
´
´
2
2
5
6
F. Caralp and W. Forst, Phys. Chem. Chem. Phys., 2003, 5, 4653.
(a) T. Troe, Phys. Chem., 1979, 83, 114; (b) W. C. Gardiner and
J. Troe, in Combustion Chemistry, ed. W. C. Gardiner, Springer
Verlag, Berlin, 1984.
´
´
´
´
de-Calais’’.
4
132
P h y s . C h e m . C h e m . P h y s . , 2 0 0 4 , 6 , 4 1 2 7 – 4 1 3 2
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 4