18
J. Am. Chem. Soc. 2001, 123, 18-25
Encapsulation of Functional Moieties within Branched Star Polymers:
Effect of Chain Length and Solvent on Site Isolation
Stefan Hecht, Nikolay Vladimirov, and Jean M. J. Fr e´ chet*
Contribution from the Department of Chemistry, UniVersity of California, Berkeley, California 94720-1460
ReceiVed September 7, 2000
Abstract: Porphyrin and pyrene photoactive cores have been encapsulated within an isolating polymeric shell
using an efficient and general strategy based on the use of dendritic initiators for the ring-opening polymerization
of ꢀ-caprolactone to yield functional core star polymers. The isolation of the core functionalities has been
studied using fluorescence quenching and fluorescence resonance energy transfer (FRET) techniques as well
as solvatochromic probes. With increasing chain length as well as solvent polarity, enhanced site isolation of
the core has been observed. These findings have been correlated to actual molecular dimensions independently
measured by pulsed field gradient spin-echo (PGSE) NMR. The developed synthetic methodology offers a
rapid route to efficient encapsulation of functional moieties and therefore has potential for the design of new
materials.
Introduction
successfully implemented, the synthesis of highly branched
structures having exotic core functionalities remains challenging.
In recent years, one of the major objectives in dendrimer
1
chemistry has been the encapsulation of active core function-
(6) (a) Dandliker, P. J.; Diederich, F.; Gross, M.; Knobler, C. B.; Louati,
A.; Sanford, E. M. Angew. Chem., Int. Ed. 1994, 33, 1739. (b) Dandliker,
P. J.; Diederich, F.; Gisselbrecht, J.-P.; Louati, A.; Gross, M. Angew. Chem.,
Int. Ed. 1995, 34, 2725. (c) Sadamoto, R.; Tomioka, N.; Aida, T. J. Am.
Chem. Soc. 1996, 118, 3978. (d) Dandliker, P. J.; Diederich, F.; Zingg, A.;
Gisselbrecht, J.-P.; Gross, M.; Louati, A.; Sanford, E. M. HelV. Chim. Acta
1997, 80, 1773. (e) Pollak, K. W.; Leon, J. W.; Fr e´ chet, J. M. J.; Maskus,
M.; Abru n˜ a, H. D. Chem. Mater. 1998, 10, 30. (f) Weyermann, P.;
Gisselbrecht, J.-P.; Boudon, C.; Diederich, F.; Gross, M. Angew. Chem.,
Int. Ed. 1999, 38, 3215. (g) Jiang, D.-L.; Aida, T. Chem. Commun. 1996,
2
alities within dendritic backbones. Numerous examples of such
structures have shown profound effects of the dendrimer shell
on the core properties, and impressively demonstrated the
importance of this site isolation concept. The use of dendritic
nonnatural building blocks to mimic enzyme functions will
ultimately provide a more detailed understanding of biological
processes, and facilitate the design of artificial nanoscale
molecular devices by creating specific microenvironments
around active units. Porphyrin core dendrimers have received
special attention due to their potential as hemeprotein mimics
3
4
1
523. (h) Collman, J. P.; Fu, L.; Zingg, A.; Diederich, F. Chem. Commun.
1997, 193. (i) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J.
5
6
Am. Chem. Soc. 1996, 118, 5708. (j) Bhyrappa, P.; Young, J. K.; Moore,
J. S.; Suslick, K. S. J. Mol. Catal. A 1996, 113, 109. For additional work
on porphyrin core dendrimers see: (k) Jin, R.-H.; Aida, T.; Inoue S. J.
Chem. Soc., Chem. Commun. 1993, 1260. (l) Tomoyose, Y.; Jiang, D.-L.;
Jin, R.-H.; Aida, T.; Yamashita, T.; Horie, K.; Yashima, E.; Okamoto, Y.
Macromolecules 1996, 29, 5236. (m) Pollak, K. W.; Sanford, E. M.; Fr e´ chet,
J. M. J. J. Mater. Chem. 1998, 8, 519. (n) Jiang, D.-L.; Aida, T. J. Am.
Chem. Soc. 1998, 120, 10895. (o) Bhyrappa, P.; Vaijayanthimala, G.;
Suslick, K. S. J. Am. Chem. Soc. 1999, 121, 262. (p) Kimura, M.; Shiba,
T.; Muto, T.; Hanabusa, K.; Shirai, H. Macromolecules 1999, 32, 8237.
(q) Vinogradov, S. A.; Lo, L.-W.; Wilson, D. F. Chem. Eur. J. 1999, 5,
6a-f
6g,h
for electron transport,
dioxygen binding,
and oxidation
catalysis.6i,j
The preparation of structurally perfect dendrimers traditionally
suffers from its time-consuming nature due to the required
repetitive coupling and activation steps, and the necessity for
7
extensive purification. Although accelerated synthetic protocols
and the construction of less perfect analogues8 have been
1338. (r) Vinogradov, S. A.; Wilson, D. F. Chem. Eur. J. 2000, 6, 2456.
(
1) (a) Newkome, G. R.; Moorefield, C. N.; V o¨ gtle, F. Dendritic
(s) Matos, M. S.; Hofkens, J.; Verheijen, W.; De Schryver, F. C.; Hecht,
S.; Pollak, K. W.; Fr e´ chet, J. M. J.; Forier, B.; Dehaen, W. Macromolecules
2000, 33, 2967.
Molecules: Concepts, Synthesis, PerspectiVes; VCH: Weinheim, 1996. (b)
Bosman, A. W.; Jansen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665.
(
c) Fischer, M.; V o¨ gtle, F. Angew. Chem., Int. Ed. 1999, 38, 885. (d)
(7) Accelerated growth strategies have been reported. For double-stage
convergent growth approaches, see: (a) Wooley, K. L.; Hawker, C. J.;
Fr e´ chet, J. M. J. J. Am. Chem. Soc. 1991, 113, 4252. (b) Ihre, H.; Hult, A.;
Fr e´ chet, J. M. J.; Gitsov, I. Macromolecules 1998, 31, 4061. For a double
exponential growth approach, consult: (c) Kawaguchi, T.; Walker, K. L.;
Wilkins, C. L.; Moore, J. S. J. Am. Chem. Soc. 1995, 117, 2159. The use
of “hypermonomer” building blocks is described in: (d) Wooley, K. L.;
Hawker, C. J.; Fr e´ chet, J. M. J. Angew. Chem., Int. Ed. 1994, 33, 82. (e)
L’abbe, G.; Forier, B.; Dehaen, W. J. Chem. Soc., Chem. Commun. 1996,
1262. Orthogonal monomers have been used by: (f) Spindler, R.; Fr e´ chet,
J. M. J. J. Chem. Soc., Perkin Trans. 1 1993, 913. (g) Zeng, F.; Zimmerman,
S. C. J. Am. Chem. Soc. 1996, 118, 5326. (h) Freeman, A. W.; Fr e´ chet, J.
M. J. Org. Lett. 1999, 1, 685.
Matthews, O. A.; Shipway, A. N.; Stoddart, J. F. Prog. Polym. Sci. 1998,
3, 1. (e) Fr e´ chet, J. M. J.; Hawker, C. J. In ComprehensiVe Polymer
Science, 2nd Suppl.; Aggarwal, S. L., Russo, S., Eds.; Pergamon Press:
Oxford, 1996; p 140. (f) Fr e´ chet, J. M. J. Science, 1994, 263, 1710. (g)
Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III Angew. Chem., Int.
Ed. 1990, 29, 138.
2
(
2) Functional dendrimers have been comprehensively reviewed by: (a)
Chow, H.-F.; Mong, T. K.-K.; Nongrum, M. F.; Wan, C.-W. Tetrahedron
998, 54, 8543. Other reviews include: (b) Newkome, G. R..; He, E..;
1
Moorefield, C. N. Chem. ReV. 1999, 99, 1689. (c) Archut, A.; V o¨ gtle, F.
Chem. Soc. ReV. 1999, 27, 233.
(3) Hecht, S.; Fr e´ chet, J. M. J. Angew. Chem., Int. Ed. 2001, 40, 74.
(
4) Dendrimers as biological mimics have been reviewed in: Smith, D.
(8) Recently, there have been major advances in achieving dendrimer-
like properties using hyperbranched polymers. Although such materials are
easily accessible via one-pot procedures, the covalent encapsulation of a
single entity is not currently practical using this approach. Comprehensive
reviews on hyperbranched polymers include: (a) Kim, Y. H. J. Polym. Sci.,
Part A: Polym. Chem. 1998, 36, 1685. (b) Voit, B. I. Acta Polym. 1995,
46, 87. (c) Reference 1e.
K.; Diederich, F. Chem. Eur. J. 1998, 4, 1353.
5) (a) Wang, P.-W.; Liu, Y.-J.; Devadoss, C.; Bharathi, P.; Moore, J.
S. AdV. Mater. 1996, 8, 237. (b) Kawa, M.; Fr e´ chet, J. M. J. Chem. Mater.
998, 10, 286. (c) Halim, M.; Pillow, J. N. G.; Samuel, I. D. W.; Burn, P.
(
1
L. AdV. Mater. 1999, 11, 371. (d) Freeman, A. W.; Koene, S. C.; Malenfant,
P. R. L.; Thompson, M. E.; Fr e´ chet, J. M. J. J. Am. Chem. Soc. In press.
1
0.1021/ja003304u CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/13/2000