Organic Letters
Letter
(
2) Wang, P.-Y.; Wang, M.-W.; Zeng, D.; Xiang, M.; Rao, J.-R.; Liu,
R. A.; Verma, M. K.; Singh, P. P. J. Org. Chem. 2018, 83 (20), 12420−
12431.
Q.-Q.; Liu, L.-W.; Wu, Z.-B.; Li, Z.; Song, B.-A.; Yang, S. J. Agric. Food
Chem. 2019, 67 (13), 3535−3545.
(
3) Ganguly, S.; Vithlani, V.; Kesharwani, A.; Kuhu, R.; Baskar, L.;
Mitramazumder, P.; Sharon, A.; Dev, A. Acta Pharm. 2011, 61 (2),
87−201.
4) For selected examples, see: (a) Shima, K.; Mutoh, K.; Kobayashi,
Corce,
́
V.; Zhao, F.; Przybylski, C.; Espagne, A.; Jullien, L.; Le Saux,
-Mansuy, V.; Ollivier, C.;
1
(
T.; Gimbert, Y.; Dossmann, H.; Mouries
̀
Fensterbank, L. Nat. Chem. 2019, 11 (9), 797−805. (c) Alsalme, A.;
Jaafar, M.; Liu, X.; Dielmann, F.; Hahn, F. E.; Al-farhan, K.; Reedijk, J.
Polyhedron 2015, 88, 1−5. (d) Wan, X.-K.; Xu, W. W.; Yuan, S.-F.;
Gao, Y.; Zeng, X.-C.; Wang, Q.-M. Angew. Chem., Int. Ed. 2015, 54
Y.; Abe, J. J. Am. Chem. Soc. 2014, 136 (10), 3796−3799. (b) Chen,
W.-C.; Zhu, Z.-L.; Lee, C.-S. Adv. Opt. Mater. 2018, 6 (18), 1800258.
(
5) For selected examples, see: (a) Chen, S.-S. CrystEngComm 2016,
8 (35), 6543−6565. (b) Chen, Q.; Chang, Z.; Song, W.-C.; Song,
H.; Song, H.-B.; Hu, T.-L.; Bu, X.-H. Angew. Chem., Int. Ed. 2013, 52
44), 11550−11553. (c) Eddaoudi, M.; Sava, D. F.; Eubank, J. F.;
Adil, K.; Guillerm, V. Chem. Soc. Rev. 2015, 44 (1), 228−249.
d) Luo, H.-B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L.; Ren, X.-M.
ACS Appl. Mater. Interfaces 2019, 11 (9), 9164−9171.
6) For transition-metal-catalyzed reactions for the synthesis of
imidazoles, see: (a) Hu, Z.; Dong, J.; Xu, X. Adv. Synth. Catal. 2017,
59 (20), 3585−3591. (b) Pardeshi, S. D.; Sathe, P. A.; Vadagaonkar,
K. S.; Melone, L.; Chaskar, A. C. Synthesis 2018, 50 (02), 361−370.
c) Li, S.; Li, Z.; Yuan, Y.; Peng, D.; Li, Y.; Zhang, L.; Wu, Y. Org.
(
33), 9683−9686.
16) Chatterjee, B.; Gunanathan, C. Chem. Commun. 2016, 52 (24),
509−4512.
17) For use of base to activate terminal alkynes, see: (a) Zhang, J.-
S.; Zhang, J.-Q.; Chen, T.; Han, L.-B. Org. Biomol. Chem. 2017, 15
1
(
4
(
(
(
(
26), 5462−5467. (b) Dhara, K.; Kapat, A.; Ghosh, T.; Dash, J.
Synthesis 2016, 48 (23), 4260−4268. (c) Bew, S. P.; Hiatt-Gipson, G.
(
D.; Lovell, J. A.; Poullain, C. Org. Lett. 2012, 14 (2), 456−459.
(d) Sabot, C.; Kumar, K. A.; Antheaume, C.; Mioskowski, C. J. Org.
3
Chem. 2007, 72 (13), 5001−5004. (e) Wang, H.; Li, Y.; Tang, Z.;
Wang, S.; Zhang, H.; Cong, H.; Lei, A. ACS Catal. 2018, 8 (11),
(
1
0599−10605.
18) The reactions were purified by acid silica gel column, and the
imidazole 4a was isolated, not the potassium salt of imidazole.
Lett. 2012, 14 (4), 1130−1133. (d) Xu, L.; Li, H.; Liao, Z.; Lou, K.;
(
Xie, H.; Li, H.; Wang, W. Org. Lett. 2015, 17 (14), 3434−3437.
(
(
e) Xiao, Y.; Zhang, L. Org. Lett. 2012, 14 (17), 4662−4665.
f) Tjutrins, J.; Arndtsen, B. A. Chemical Science 2017, 8 (2), 1002−
1
007.
(
7) For transition-metal-free reactions for the synthesis of
imidazoles, see: (a) Das, U. K.; Shimon, L. J. W.; Milstein, D.
Chem. Commun. 2017, 53 (98), 13133−13136. (b) Gulevich, A. V.;
Balenkova, E. S.; Nenajdenko, V. G. J. Org. Chem. 2007, 72 (21),
7
878−7885. (c) Wu, J.; Zhang, H.; Ding, X.; Tan, X.; Shen, H. C.;
Chen, J.; He, W.; Deng, H.; Song, L.; Cao, W. Eur. J. Org. Chem.
2
018, 2018 (47), 6758−6763. (d) Naidoo, S.; Jeena, V. Eur. J. Org.
Chem. 2019, 2019 (5), 1107−1113. (e) Yang, D.; Shan, L.; Xu, Z.-F.;
Li, C.-Y. Org. Biomol. Chem. 2018, 16 (9), 1461−1464.
(
8) Review on imidazole synthesis, see: Rossi, R.; Angelici, G.;
Casotti, G.; Manzini, C.; Lessi, M. Adv. Synth. Catal. 2019, 361 (12),
737−2803.
9) Magre, M.; Maity, B.; Falconnet, A.; Cavallo, L.; Rueping, M.
Angew. Chem., Int. Ed. 2019, 58 (21), 7025−7029.
10) (a) Osano, M.; Kida, T.; Yonekura, K.; Tsuchimoto, T. Adv.
2
(
(
Synth. Catal. 2019, 361 (12), 2825−2831. (b) Huang, T.; Liu, X.;
Lang, J.; Xu, J.; Lin, L.; Feng, X. ACS Catal. 2017, 7 (9), 5654−5660.
(
c) Zavesky, B. P.; Johnson, J. S. Angew. Chem., Int. Ed. 2017, 56 (30),
8
1
805−8808. (d) Kuang, J.; Ma, S. J. Am. Chem. Soc. 2010, 132 (6),
786−1787. (e) Okura, K.; Kawashima, H.; Tamakuni, F.; Nishida,
N.; Shirakawa, E. Chem. Commun. 2016, 52 (97), 14019−14022.
(
Catal. 2018, 8 (9), 7973−7982. (b) Field, L. D.; Turnbull, A. J.;
Turner, P. J. Am. Chem. Soc. 2002, 124 (14), 3692−3702.
(
11) (a) Gorgas, N.; Stoger, B.; Veiros, L. F.; Kirchner, K. ACS
̈
12) (a) Alonso, F.; Yus, M. ACS Catal. 2012, 2 (7), 1441−1451.
(
b) Hazra, A.; Lee, M. T.; Chiu, J. F.; Lalic, G. Angew. Chem., Int. Ed.
018, 57 (19), 5492−5496. (c) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.;
J.; Liu, L.; Xie, S.; Yuan, L.; Zhou, Y.; Yin, S.-F. J. Am. Chem. Soc.
019, 141 (6), 2535−2544. (e) Gallego, D.; Bruck, A.; Irran, E.;
Meier, F.; Kaupp, M.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc.
013, 135 (41), 15617−15626.
13) Ha, H.; Shin, C.; Bae, S.; Joo, J. M. Eur. J. Org. Chem. 2018,
018 (20−21), 2645−2650.
14) (a) Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Angew. Chem.,
2
2
2
̈
2
(
2
(
Int. Ed. 2013, 52 (27), 6953−6957. (b) He, C.; Hao, J.; Xu, H.; Mo,
Y.; Liu, H.; Han, J.; Lei, A. Chem. Commun. 2012, 48 (90), 11073−
1
1075. (c) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J.
Am. Chem. Soc. 2012, 134 (13), 5766−5769. (d) Mitsudo, K.;
Shiraga, T.; Mizukawa, J.-i.; Suga, S.; Tanaka, H. Chem. Commun.
2010, 46 (48), 9256−9258. (e) Sharma, S.; Kumar, M.; Vishwakarma,
D
Org. Lett. XXXX, XXX, XXX−XXX