Pd-Catalyzed Aerobic Alcohol Oxidation Mechanism
A R T I C L E S
Chart 1. Catalyst Systems that Promote Direct Dioxygen-Coupled
Scheme 1. General Mechanism of Palladium-Catalyzed Aerobic
Alcohol Oxidation
Oxidation of Organic Substrates
conditions commonly employed for synthetic reactions. Namely,
the catalytic rate can be controlled by the rate of oxygen gas
dissolution into DMSO. If an adequate supply of dioxygen is
available in solution, the Pd(OAc)2/DMSO system also exhibits
turnover-limiting alcohol oxidation by palladium(II). Because
palladium(0) is an intrinsically unstable form of the catalyst
(cf. Scheme 1), slow dissolution of oxygen into the reaction
mixture not only limits the reaction rate but also leads to
enhanced catalyst decomposition. Mechanistic insights into
catalyst decomposition pathways are obtained from analysis of
the full kinetic timecourses of catalytic reactions. The results
of this study and the methods described herein are applicable
to the entire scope of palladium-catalyzed aerobic oxidation
reactions.
from these studies that the ligands coordinated to palladium exert
a significant influence on the reaction, including the rate
(turnover frequency), the nature of the catalyst resting state, and
the identity of the turnover-limiting step. Ligands also influence
the catalyst stability by affecting the rate of catalyst reoxidation
relative to decomposition (steps ii and iii, Scheme 1).
Pd(OAc)2/DMSO is the only catalyst system for which
aerobic oxidation of the catalyst (step ii, Scheme 1) has been
reported to be the turnover-limiting step.7a,8 In all other systems,
steps associated with palladium(II)-mediated oxidation of the
alcohol are turnover limiting (step i, Scheme 1).7 In the current
study, we present a more thorough kinetic analysis of Pd(OAc)2/
DMSO-catalyzed aerobic alcohol oxidation that reveals this
catalyst system is susceptible to mass-transfer-limited rates under
Results and Discussion
Kinetic Studies of Alcohol Oxidation. Our initial mecha-
nistic studies of the Pd(OAc)2/DMSO system focused on the
oxidation of 2,5-dimethoxybenzyl alcohol, 1.7a This reaction,
originally reported by Peterson and Larock,3g proceeds to nearly
complete conversion within 12 h at 80 °C (eq 6). In our earlier
(4) Other groups have also employed the Pd(OAc)2/DMSO catalyst system in
aerobic oxidation reactions. See, for example: (a) Ref 1f. (b) Ro¨nn, M.;
Ba¨ckvall, J.-E.; Andersson, P. G. Tetrahedron Lett. 1995, 36, 7749-7752.
(c) Ro¨nn, M.; Andersson, P. G.; Ba¨ckvall, J.-E. Acta Chem. Scand. 1997,
51, 773-777. (d) Bee, C.; Leclerc, E.; Tius, M. A. Org. Lett. 2003, 5,
4927-4930.
(5) See, for example: (a) Davidson, J. M.; Triggs, C. Chem. Ind. 1967, 1361.
(b) Itatani, H.; Yoshimoto, H. Chem. Ind. 1971, 674-675. (c) Blackburn,
T. F.; Schwartz, J. J. Chem. Soc., Chem. Commun. 1977, 157-158. (d)
Hosokawa, T.; Miyagi, S.; Murahashi, S.; Sonoda, A. J. Org. Chem. 1978,
43, 2752-2757.
(6) See review articles in ref 1 and the following leading references: Pd(OAc)2/
pyridine: (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem.
1999, 64, 6750-6755. (b) Iwasawa, T.; Tokunaga, M.; Obora, Y.; Tsuji,
Y. J. Am. Chem. Soc. 2004, 126, 6554-6555. Pd(OAc)2/phenanthroline
derivatives: (c) ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science
2000, 287, 1636-1639. (d) Bianchi, D.; Bortolo, R.; D’Aloisio, R.; Ricci,
M. Angew. Chem., Int. Ed. 1999, 38, 706-708. PdCl2/(-)-sparteine: (e)
Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725-7726.
(f) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001,
123, 7475-7476. PdX2/NEt3: (g) Schultz, M. J.; Park, C. C.; Sigman, M.
S. Chem. Commun. 2002, 3034-3035. (h) Timokhin, V. I.; Anastasi, N.
R.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 12996-12997. (NHC)Pd-
(OAc)2(OH2): (i) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman,
M. S. Angew. Chem., Int. Ed. 2003, 42, 3810-3813. Palladacycles: (j)
Hallman, K.; Moberg, C. AdV. Synth. Catal. 2001, 343, 260-263.
(7) For mechanistic studies of catalytic aerobic alcohol oxidation with different
catalyst systems, see the following. Pd(OAc)2/DMSO: (a) Steinhoff, B.
A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766-767. Pd-
(OAc)2/pyridine: (b) Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179-
4181. (c) Steinhoff, B. A.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc.
2004, 126, 11268-11278. Pd(OAc)2/phenanthroline derivatives: (d) ten
Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. AdV. Synth. Catal. 2002,
344, 355-369. (e) ten Brink, G.-J.; Arends, I. W. C. E.; Hoogenraad, M.;
Verspui, G.; Sheldon, R. A. AdV. Synth. Catal. 2003, 345, 497-505. (f)
ten Brink, G.-J.; Arends, I. W. C. E.; Hoogenraad, M.; Verspui, G.; Sheldon,
R. A. AdV. Synth. Catal. 2003, 345, 1341-1352. (g) Bortolo, R.; Bianchi,
D.; D’Aloisio, R.; Querci, C.; Ricci, M. J. Mol. Catal. A 2000, 153, 25-
29. PdCl2/(-)-sparteine: (h) Mueller, J. A.; Jensen, D. R.; Sigman, M. S.
J. Am. Chem. Soc. 2002, 124, 8202-8203. (i) Mueller, J. A.; Sigman, M.
S. J. Am. Chem. Soc. 2003, 125, 7005-7013. (j) Trend, R. M.; Stoltz, B.
M. J. Am. Chem. Soc. 2004, 126, 4482-4483. Pd(OAc)2/NEt3: (k) Schultz,
M. J.; Adler, R. S.; Zierkiewicz, W.; Privalov, T.; Sigman, M. S. J. Am.
Chem. Soc. 2005, 127, 8499-8507. (NHC)Pd(OAc)2(OH2): (l) Mueller,
J. A.; Goller, C. P.; Sigman, M. S. J. Am. Chem. Soc. 2004, 126, 9724-
9734. Palladacycles: (m) Paavola, S.; Zetterberg, K.; Privalov, T.; Cso¨regh,
I.; Moberg, C. AdV. Synth. Catal. 2004, 346, 237-244.
study, we demonstrated that the reaction stoichiometry corre-
sponds to an O2/substrate ratio of 0.50(3). Control experiments
reveal that hydrogen peroxide, if it forms in the reaction, is not
competent to serve as an oxidant because it undergoes rapid
disproportionation in the presence of the palladium catalyst.9
Kinetic studies of the catalytic reaction were performed by
using a computer-interfaced gas-uptake apparatus to monitor
the change in oxygen pressure within in a sealed, temperature-
controlled reaction vessel. The lack of an induction period
enabled us to obtain much of our kinetics data via initial-rate
methods. Analysis of the full-reaction timecourse provides
additional insights into the catalytic mechanism (see below).
The dependence of the rate on [Pd(OAc)2] displays a
nonlinear correlation that fits well to a hyperbolic function
(saturation-like kinetics). The curve-fit asymptotically ap-
proaches a maximum rate of 126 µmol/min (Figure 1A). The
(9) For a detailed description of the control experiments used to establish this
fact, see the Supporting Information of ref 7a. The precise mechanism of
disproportionation is not known; however, we have made the following
qualitative observations. Addition of aqueous hydrogen peroxide (30%) to
a fresh solution of Pd(OAc)2 (recrystallized from toluene) in DMSO results
in rapid disproportionation. In contrast, if hydrogen peroxide is added to a
suspension of palladium black obtained from a completed catalytic reaction,
disproportionation is slow. These observations suggest that the Pd-catalyzed
disproportionation mechanism may proceed via a Pd(II)/Pd(IV) cycle.
(8) For a recent computational study of the Pd(OAc)2/DMSO system, see:
Zierkiewicz, W.; Privalov, T. Organometallics 2005, 24, 6019-6028.
9
J. AM. CHEM. SOC. VOL. 128, NO. 13, 2006 4349