10.1002/anie.201800354
Angewandte Chemie International Edition
COMMUNICATION
C. B. Knobler, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58-
67.
a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O.
M. Yaghi, Science 2005, 310, 1166-1170; b) X. Feng, X. Ding, D. Jiang,
Chem. Soc. Rev. 2012, 41, 6010-6022; c) S. Y. Ding, W. Wang, Chem.
Soc. Rev. 2013, 42, 548-568.
a) M. Mastalerz, I. M. Oppel, Angew. Chem. Int. Ed. 2012, 51, 5252-
5255; b) Z.-B. Han, Z.-Z. Xiao, M. Hao, D.-Q. Yuan, L. Liu, N. Wei, H.-
M. Yao, M. Zhou, Cryst. Growth Des. 2015, 15, 531-533; c) I. Hisaki, S.
Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H.
Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, J. Am. Chem. Soc.
2016, 138, 6617-6628.
a) Y. He, S. Xiang, B. Chen, J. Am. Chem. Soc. 2011, 133, 14570-
14573; b) P. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu,
W. Zhou, M. O'Keeffe, Y. Han, B. Chen, Angew. Chem. Int. Ed. 2015,
54, 574-577; c) C. A. Zentner, H. W. Lai, J. T. Greenfield, R. A.
Wiscons, M. Zeller, C. F. Campana, O. Talu, S. A. FitzGerald, J. L.
Rowsell, Chem. Commun. 2015, 51, 11642-11645.
Doxo, Nano-PFC-1 and Doxo@Nano-PFC-1 were incubated with
Hela cells to investigate the cooperative therapeutic effects in vitro.
As shown in Figure S24, the resulting cells exhibited blue
fluorescence from HOFs and red fluorescence from Doxo, indicating
efficient internalization of materials. Figure 5a shows that the cell
viability drop to 10% for the Doxo group at the concentration of 10
μg/mL. Compared with Doxo drug group alone, Nano-PFC-1 and
Doxo@Nano-PFC-1 show much lower cytotoxicity, demonstrating
their outstanding biocompatibility. Under the exposure of 400 nm
light for 30 minutes, Doxo@Nano-PFC-1 causes the fraction of
surviving cell dropped to ca. 20.4%, delivering higher therapeutic
efficacy than Nano-PFC-1 (31.9% cell survival) and comparable
efficacy as commercial Doxo drug (18.3% cell survival) (Figure 5b).
These results indicate that PFC-1 would be a promising delivery
system for combinational therapy with the advantages of low toxicity
and high efficacy.
[5]
[6]
[7]
[8]
[9]
H. Wang, B. Li, H. Wu, T. L. Hu, Z. Yao, W. Zhou, S. Xiang, B. Chen, J.
Am. Chem. Soc. 2015, 137, 9963-9970.
F. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew.
Chem. Int. Ed. 2017, 56, 2101-2104.
In summary, an ultra-robust hydrogen-bonded organic framework
PFC-1 has been synthesized. The high chemical stability of PFC-1
was attributed to the introduction of multiple hydrogen bonding, the
strong π-π interactions and the avoidance of unpaired hydrogen
donors/acceptors. We believe that these design principles pave a
way for developing robust HOF materials. Moreover, the acid-
assistant crystalline redemption discovered in this work offers an
inexpensive and facile method to recover the depressed surface
area and porosity of HOFs. As a proof of concept, we demonstrated
that the photoactive PFC-1 is an excellent drug carrier for synergetic
chemo-photodynamic therapy with the merit of low cytotoxicity and
high efficacy, representing the first example of HOF materials for
multiple therapeutics for cancer.
[10] a) S. Nandi, D. Chakraborty, R. Vaidhyanathan, Chem. Commun. 2016,
52, 7249-7252; b) W. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J.
Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R.
Champness, M. Schroder, J. Am. Chem. Soc. 2010, 132, 14457-14469.
c) J. Lu, C. Perez-Krap, M. Suyetin, N. H. Alsmail, Y. Yan, S. Yang, W.
Lewis, E. Bichoutskaia, C. C. Tang, A. J. Blake, R. Cao, M. Schroder, J.
Am. Chem. Soc. 2014, 136, 12828-12831; d) T. H. Chen, I. Popov, W.
Kaveevivitchai, Y. C. Chuang, Y. S. Chen, O. Daugulis, A. J. Jacobson
and O. Š. Miljanić, Nat. Commum, 2014, 5, 5131.
[11] a) P. Li, Y. He, J. Guang, L. Weng, J. C. Zhao, S. Xiang, B. Chen, J.
Am. Chem. Soc. 2014, 136, 547-549; b) Yasuhiro Aoyama, Masumi
Asakawa, Y. Matsui, H. Ogoshi, J. Am. Chem. Soc. 1991, 113, 6233-
6240; d) G. R. Desiraju, Angew. Chem. Int. Ed. 1995, 34, 2311-2327; c)
K. D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A. C. Sue, T. Y. Zhou, L.
Zhang, X. Zhao, Y. Liu, Z. T. Li, J. Am. Chem. Soc. 2013, 135, 17913-
17918; d) G. R. Desiraju, J. Am. Chem. Soc. 2013, 135, 9952-9967; e)
R. S. Patil, D. Banerjee, C. Zhang, P. K. Thallapally, J. L. Atwood,
Angew. Chem. Int. Ed. 2016, 55, 4523-4526.
Acknowledgements
R. C. thanks the National Natural Science Foundation of China
(NSFC, Grant 21520102001, 21521061, 21331006, 9162214),
Key Research Program of Frontier Science, CAS (QYZDJ-SSW-
SLH045). T.-F. L thanks “Strategic Priority Research Program”
of the Chinese Academy of Sciences (Grant No. XDB20000000)
and NSFC (Grant 21441008). The authors also thank Suzhou
NIR-Optics Technology Co. Ltd. for its instrumental and
technical supports on the fluorescence imaging and photo-
dynamic therapy.
[12] a) B. Kohl, F. Rominger, M. Mastalerz, Org. Lett. 2014, 16, 704-707; b)
B. Kohl, M. V. Bohnwagner, F. Rominger, H. Wadepohl, A. Dreuw, M.
Mastalerz, Chem.Eur. J. 2016, 22, 646-655.
[13] a) A. P. Cote, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J.
Am. Chem. Soc. 2007, 129, 12914-12915; b) S. Wan, J. Guo, J. Kim,
H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2009, 48, 5439-5442.
[14] R. H. Holm, P. Kennepohl, E. I. Solomon, Chem. Rev. 1996, 96, 2239-
2314.
[15] a) K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa, J. T. Jones, Y. Z.
Khimyak, D. Bradshaw, M. J. Rosseinsky, J. Am. Chem. Soc. 2010,
132, 4119-4130; b) J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S.
Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P.
C. Stair, R. Q. Snurr, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2013,
135, 10294-10297.
[16] a) M. X. Wu, Y. W. Yang, Adv. Mater. 2017, 29; b) C. Song, Y. Zhang,
C. Li, G. Chen, X. Kang, Q. Wang, Adv. Funct. Mater. 2016, 26, 4192-
4200; c) R. Ruiz-González, P. Milán, R. Bresolí-Obach, J. Stockert, A.
Villanueva, M. Cañete, S. Nonell, Cancers 2017, 9, 18.
[17] a) J. Kagan, Organic Photochemistry: Principles and Applications, San
Diego: Academic press, 1993; b) Y. Liu, C. T. Buru, A. J. Howarth, J. J.
Mahle, J. H. Buchanan, J. B. DeCoste, J. T. Hupp, O. K. Farha, J.
Mater. Chem. A 2016, 4, 13809-13813.
[18] K. S. Walton, R. Q. Snurr, J. Am. Chem. Soc. 2007, 129, 8552-8556.
[19] N. J. Silva, F. B. Machado, H. Lischka, A. J. Aquino, Phys. Chem.
Chem. Phys. 2016, 18, 22300-22310.
[20] a) J. Kaplan, J. Chem. Phys. 1958, 28, 278-282; b) D. Lankhorst, J.
Schriever, J. C. Leyte, Chem. Phys. 1983, 77, 319-340.
Keywords: Hydrogen-Bonded Organic Frameworks • Structural
Stability • π-Stacking Interactions • Singlet Oxygen Generation •
Chemo-Photodynamic Therapy.
[1]
a) T. Steiner, G. R. Desiraju, The weak hydrogen bond in structural
chemistry and biology; OUP: Oxford, 1999,pp 108-113; b) A. Bitra, A.
Biswas, R. Anand, Biochemistry, 2013, 52, 8106−8114.
[2]
[3]
J. Lu, R. Cao, Angew. Chem. Int. Ed. 2016, 55, 9474-9480.
a) H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402,
276-279; b) S. L. James, Chem. Soc. Rev. 2003, 32, 276−288; c) H. C.
Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673-674; d) J.
Bae, J. W. Jung, H. Y. Park, C. H. Cho, J. Park, Chem. Commun. 2017,
53, 12100-12103. e) X.-D. Zhu, K. Zhang, Y. Wang, W.-W. Long, R.-J.
Sa, T.-F. Liu, and J. Lü, Inorg. Chem. 2018, 57, 1060–1065.
[21] J. Zhang, L. Sun, F. Xu, F. Li, H. Y. Zhou, Y. L. Liu, Z. Gabelica, C.
Schick, Chem. Commun. 2012, 48, 759-761.
[4]
a) X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int.
Ed. 2006, 45, 1557-1559; b) A. Phan, C. J. Doonan, F. J. Uribe-Romo,
This article is protected by copyright. All rights reserved.