Journal of the American Chemical Society
ARTICLE
40 ( 5 nm and a length of 400 ( 20 nm were constructed only in
15 min of reaction time. The XRD peaks of β-FeOOH nanorods
were assigned to the tetragonal crystalline phase (JCPDS 34-
1266). The lattice resolved fringes of β-FeOOH nanorods with a
constant spacing of 2.60 Å correspond to the (400) planes, as
confirmed by TEM and XRD results, which means that β-FeOOH
nanorods were preferentially grown along a specific direction of
the Z axis with the minimization of surface energy. The findings
attest to the solvent and templating effects of ILs on the for-
mation of nanostructures in droplet-based microreactors. These
results confirm that the DIM method is an innovative synthetic
route to nanostructured inorganic oxides, which is ultrafast and
versatile without any rate-controlling agents.
Catalytic Reaction. ZSM-5 is one of the most important
catalysts in organic synthesis and in oil refining process, owing to
its high-surface area, shape selectivity, and strong acidity. There-
fore, acetal formation reaction was chosen to test the quality of
the ZSM-5 zeolite catalyst synthesized by DIM. As can be seen in
Table S1, Supporting Information, the as-prepared ZSM-5
shows 53.6% and 71.8% conversion yields of benzaldehyde
when reacted with 1-butanol and glycol, respectively, which
are significantly higher than 30.4% and 52.9% yielded by the
conventional ZSM-5. The highly improved catalytic perfor-
mance of the zeolite obtained from DIM could be ascribed to
the large number of active sites on the high surface area as well
as the presence of mesopore that is an important factor in the
acetal formation with large size reactant molecules, such as
benzaldehyde.17b
’ ACKNOWLEDGMENT
This study was funded by the 2008 Creative Research Initiative
Program [R16-2008-138-01000-0(2008)] administered by the
Korean Ministry of Education, Science, and Technology.
’ REFERENCES
(1) (a) Van Bommel, K. J.; Friggeri, C. A.; Shinkai, S. Angew. Chem.,
Int. Ed. 2003, 42, 980. (b) Cushing, B. L.; Kolesnichenko, V. L.;
O’Connor, C. J. Chem. Rev. 2004, 104, 3893. (c) Jun, Y.; Choi, J.;
Cheon, J. Angew. Chem., Int. Ed. 2006, 45, 3414.
(2) (a) Abou-Hassan, A.; Sandre, O.; Cabuil, V. Angew. Chem., Int.
Ed. 2010, 49, 6268. (b) Duraiswamy, S.; Khan, S. A. Small 2009, 5, 2828.
(3) (a) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663. (b)
Morris, R. E.; Weigel, S. J. Chem. Soc. Rev. 1997, 26, 309.
(4) (a) Morris, R. E. Chem. Commun. 2009, 2990. (b) Cai, R.; Liu, Y.;
Gu, S.; Yan, Y. J. Am. Chem. Soc. 2010, 132, 12776.
(5) (a) The, S. Y.; Lin, R.; Hung, L. H.; Lee, A. P. Lab Chip 2008,
8, 198. (b) Hung, L. H.; Choi, K. M.; Tseng, W.-Y.; Tan, Y.-C.; Shea,
K. J.; Lee, A. P. Lab Chip 2006, 6, 174.
(6) (a) Frenz, L.; El Harrak, A.; Pauly, M.; gin-Colin, S. B.; Griffiths,
A. D.; Baret, J.-C. Angew. Chem., Int. Ed. 2008, 47, 6817. (b) Shum, H. C.;
Abate, A. R.; Lee, D.; Studart, A. R.; Wang, B.; Chen, C. H.; Thiele, J.;
Shah, R. K.; Krummel, A.; Weitz, D. A. Macromol. Rapid Commun. 2010,
31, 108. (c) Pan, Y. C.; Ju, M. H.; Yao, J. F.; Zhang, L. X.; Xu, N. P. Chem.
Commun. 2009, 7233. (d) Pan, Y. C.; Yao, J. F.; Zhang, L. X.; Xu, N. P.
Ind. Eng. Chem. Res. 2009, 48, 8471.
(7) (a) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew. Chem., Int. Ed.
2006, 45, 7336. (b) Li, W.; Pham, H. H.; Nie, Z.; MacDonald, B.;
Guenther, A.; Kumacheva, E. J. Am. Chem. Soc. 2008, 130, 9935.
(c) Shestopalov, I.; Tice, J. D.; Ismagilov, R. F. Lab Chip. 2004,
4, 316. (d) Chan, E. M.; Alivisatos, A. P.; Mathies, R. A. J. Am. Chem.
Soc. 2005, 127, 13854. (e) Song, Y.; Hormes, J.; Kumar, C. S. S. R. Small
2008, 4, 698. (f) Hassan, A. A.; Sandre, O.; Cabuila, V.; Tabeling, P.
Chem. Commun. 2008, 1783.
(8) (a) Yen, B. K. H.; Gunther, A.; Schmidt, M. A.; Jensen, K. F.;
Bawendi, M. G. Angew. Chem., Int. Ed. 2005, 44, 5447. (b) Yen, B. K. H.;
Stott, N. E.; Jensen, K. F.; Bawendi, M. G. Adv. Mater. 2003, 15, 1858.
(9) (a) Marre, S.; Park, J.; Rempel, J.; Guan, J.; Bawendi, M. G.;
Jensen, K. F. Adv. Mater. 2008, 20, 4830. (b) Marre, S.; Baek, J.; Park, J.;
Bawendi, M. G.; Jensen, K. F. J. Assoc. Lab. Auto. 2009, 367. (c) Kawanami,
H.; Matsushima, K.; Sato, M.; Ikushima, Y. Angew. Chem., Int. Ed. 2007,
46, 5129.
(10) (a) Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P.
J. Phys. Chem. Ref. Data 2006, 35, 1475. (b) Andrade, C. K. Z. L.; Alves,
M. Curr. Org. Chem. 2005, 9, 195. (c) Welton, T. Coord. Chem. Rev.
2004, 248, 2459. (d) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed.
2000, 39, 3773. (e) Welton, T. Chem. Rev. 1999, 99, 2071.
’ CONCLUSION
In summary, an ultrafast and continuous synthesis method has
been presented for those unaccommodating nanomaterials that
are difficult to synthesize because of a long reaction time that can
last up to days even at high pressure and temperature. The droplet-
and ionic liquid-assisted microfluidic (DIM) system devised and
fabricated in this work enables a reduction of reaction time from
days to tens of minutes, allows mild reaction conditions, and yet
produces narrow size distribution and excellent crystalline qua-
lities. Three unaccommodating nanomaterials have been synthe-
sized with the DIM system to fully demonstrate the advantages
offered by the synthesis method with excellent results. In
particular, ZSM-5 zeolite nanomaterial, which is an important
catalyst, was synthesized by the method and delivered a perfor-
mance superior to the conventionally synthesized catalyst. The
synergistic combination of ionic liquid and droplet microfluidic
process allows for ultrafast and continuous synthesis of various
inorganic nanomaterials, which greatly expands the utility and
the versatility of this approach for the synthesis of alternative
nanomaterials.
(11) Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.;
Wormald, P.; Morris, R. E. Nature 2004, 430, 1012.
(12) (a) Morris, R. E. Angew. Chem., Int. Ed. 2008, 47, 442. (b) Cai,
R.; Sun, M. W.; Chen, Z. W.; Munoz, R.; O’Neill, C.; Beving, D. E.; Yan,
Y. S. Angew. Chem., Int. Ed. 2008, 47, 525.
(13) (a) Park, H. S.; Lee, Y. C.; Choi, B. G.; Cho, Y. S.; Yang, J. W.;
Hong, W. H. Chem. Commun. 2009, 4058. (b) Park, H. S.; Choi, Y. S.;
Kim, Y. J.; Hong, W. H.; Song, H. J. Adv. Funct. Mater. 2007, 17, 2411.
(c) Park, H. S.; Yang, S. H.; Jun, Y. S.; Hong, W. H.; Kang, J. K. Chem.
Mater. 2007, 19, 535. (d) Park, H. S.; Lee, Y. C.; Choi, B. G.; Hong,
W. H.; Yang, J. W. ChemSusChem 2008, 1, 356.
(14) (a) Parnham, E. R.; Drylie, E. A.; Wheatley, P. S.; Slawin,
A. M. Z.; Morris, R. E. Angew. Chem., Int. Ed. 2006, 45, 4962. (b)
Parnham, E. R.; Morris, R. E. J. Am. Chem. Soc. 2006, 128, 2204. (c) Ma,
H. J.; Tian, Z. J.; Xu, R. S.; Wang, B. C.; Wei, Y.; Wang, L.; Xu, Y. P.;
Zhang, W. P.; Lin, L. W. J. Am. Chem. Soc. 2008, 130, 8120. (d) Wang, L.;
Xu, Y. P.; Wei, Y.; Duan, J. C.; Chen, A. B.; Wang, B. C.; Ma, H. J.; Tian,
Z. J.; Lin, L. W. J. Am. Chem. Soc. 2006, 128, 7432. (e) Xu, Y. P.; Tian,
Z. J.; Wang, S. J.; Hu, Y.; Wang, L.; Wang, B. C.; Ma, Y. C.; Hou, L.; Yu,
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, Table S1,
b
and Figure S1ÀS8. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
dpkim@cnu.ac.kr; phs0727@khu.ac.kr
14769
dx.doi.org/10.1021/ja2054429 |J. Am. Chem. Soc. 2011, 133, 14765–14770