Reduction of Ketones
J. Am. Chem. Soc., Vol. 121, No. 30, 1999 7131
peridines indicate that axial 2-methyl substituents lower the
amine lone pair ionization potential (IP) by ∼0.26 eV, while
equatorial 2-methyl substituents lower the lone pair IP by less
than 0.1 eV. This observation suggests that C-C bonds are
better donors than C-H, assuming that the vicinal antiperiplanar
bonds stabilize the amine radical cation by hyperconjugative
electron release. These results were interpreted by Cieplak as
the consequence of ring distortion. This distortion is evident in
Both the Felkin-Anh and Cieplak models, as well as other
10
6,11
models (classical and modern molecular orbital based ) that
have been proposed to describe stereoselectivity in nucleophilic
additions of carbonyl compounds, can be classified as “gas-
phase” models. In other words, they refer to isolated reactants
and focus entirely on the intrinsic structural and electronic
features of the substrate, despite the fact that the stereochemical
outcome of the reactions of interest often exhibits a marked
sensitivity to the solvent and the type of counterion employed
2,2,6,6-tetramethylpiperidine, wherein the syn-diaxial interac-
tion of the methyl groups effectively increases the size of the
six-membered ring.3b The lowering of the ionization potential
of cyclic amines and ethers by an increase in ring size is a well-
12
with ionic and polar reducing agents.
The intrinsic effects that determine the stereochemistry of
ketone reduction reactions can be examined experimentally in
the gas phase, where extrinsic solvent and counterion effects
are absent. We introduced in a recent communication an
experimental method for distinguishing the diastereomeric
products of gas-phase hydride reduction reactions and presented
preliminary results on the quantitative determination of the
intrinsic diastereoselectivity of reductions of a few alkyl-
5
known fact. Moreover, recent studies on the hydrochlorination
6
and fluorination of 5-substituted adamantan-2-ols and confor-
mational studies of Lewis acid complexed R,â-unsaturated
7
esters seem to confirm the greater electron-donating capability
of C-H bonds over C-C bonds.
The work carried out by le Noble on hydride reductions of
5
-substituted 2-adamantanones further supports the Cieplak
1
3
8
substituted cyclohexanones. The stereochemical outcome of
gas-phase hydride reduction reactions of 4-tert-butylcyclohex-
anone, 2-methylcyclohexanone, and 3,3,5-trimethylcyclohex-
anone by pentacoordinate silicon hydride ions was found to be
remarkably similar to that reported for these substrates toward
model. These molecules show stereoselectivity opposite to what
would be predicted by the widely accepted Felkin-Anh model.
Moreover, studies of nucleophilic additions to 3-substituted
cyclohexanones (A, Y ) O) and electrophilic additions to
3
b
3
-substituted methylenecyclohexanes (A, Y ) CH2) also
3
,12
common reducing agents in solution
and also in agreement
with the diastereoselectivities predicted by MO calculations for
(
10) (a) Cram, D. J.; Abd Elhafez, F. A. J. Am. Chem. Soc. 1952, 74,
5
828. (b) Cram, D. J.; Green, F. D. J. Am. Chem. Soc. 1953, 75, 6005. (c)
Barton, D. H. R. J. Chem. Soc. 1953, 1927. (d) Dauben, W. G.; Fonken, G.
J.; Noyce, D. S. J. Am. Chem. Soc. 1956, 78, 2579. (e) Richer, J. C. J. Org.
Chem. 1964, 30, 324. (f) Marshal, J. A.; Caroll, R. D. J. Org. Chem. 1965,
3
0, 2748. (g) Karabatsos, G. J. J. Am. Chem. Soc. 1967, 89, 1367. (h)
provide results that are in full accord with the Cieplak model.
The presence of an equatorial electron-donating group at C3
was found to decrease the percentage of axial attack, while an
increase occurs for electron-withdrawing substituents. This is
consistent with the Cieplak description of the nucleophile’s
approach in a direction that is anti-periplanar to the best electron-
Ch e´ rest, M.; Felkin, H. Tetrahedron Lett. 1968, 2205. (i) Klein, J.;
Dunkelblum, E.; Eliel, E. L.; Senda, Y. Tetrahedron Lett. 1968, 6127. (j)
Klein, J. Tetrahedron Lett. 1973, 4307. (k) Klein, J. Tetrahedron 1974, 30,
3
349. (l) Wipke, W. T.; Gund, P. J. Am. Chem. Soc. 1976, 98, 8107. (m)
Wigfield, D. C.; Gowland, F. W. J. Org. Chem. 1977, 42, 1108.
11) (a) Anh, N.-T.; Eisenstein, O.; Lefour, J. M.; Tran Huu Dau, M. R.
(
J. Am. Chem. Soc 1973, 95, 6146. (b) Ahn, N.-T.; Eisenstein, O. Tetrahedron
Lett. 1976, 155. (c) Ahn, N.-T.; Eisenstein, O. NouV. J. Chim. 1977, 1, 61.
(d) Liotta, C. Tetrahedron Lett. 1975, 519-523. (e) Ashby, E. C.; Boone,
J. R. J. Org. Chem. 1976, 41, 2890. (f) Royer, J. Tetrahedron Lett. 1978,
donating bond in the ring. The interpretation of these results,
however, has been challenged by Houk,2e who has offered an
alternative explanation in terms of electrostatic effects. An
electron-withdrawing group at C3 would induce a partial positive
charge at that atom, thus making the axial approach of a
negatively charged nucleophile more favorable. The contribution
of electrostatic control to the diastereoselectivity of hydride
additions to carbonyl compounds is also evident in the π-facial
selectivity observed in 1,2-addition reactions of organometallic
1
343. (g) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540. (h) Giddings,
M. R.; Hudee, J. Can. J. Chem. 1981, 59, 459. (i) Houk, K. N.; Paddon-
Row, M. N.; Rondan, N.; Wu, Y.-D.; Brown, F. K.; Spellmeyer, D. C.;
Metz, J. T.; Li, Y.; Loncharich, R. J. Science 1986, 231, 1108. (j) Wu,
Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 908. (k) Mukherjee, D.;
Wu, Y.-D.; Fronczek, F. R.; Houk, K. N. J. Am. Chem. Soc. 1988, 110,
3328. (l) Wu, Y.-D.; Houk, K. N.; Trost, B. M. J. Am. Chem. Soc. 1987,
1
09, 5560. (m) Cieplak, A. S.; Tait, B. D.; Johnson, C. R. J. Am. Chem.
Soc. 1989, 111, 8447. (n) Kurita, Y.; Takayama, C. Tetrahedron 1990, 46,
789. (o) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun.
9
reagents to 4,4-disubstituted dienones. The results, according
3
to Wipf and Kim, can be readily explained by the Felkin-Anh
model and not by Cieplak. Interestingly, a linear correlation
was observed between the calculated (AM1) dipole moment of
some dienones and their characteristic R-face selectivity. This
finding indicates a significant contribution from electrostatic
control to the stereochemical outcome of polar additions to
sterically unhindered carbonyl groups. However, certain dif-
ferences in the π-facial selectivity between monocyclic and
spirocyclic systems cannot be fully explained on the sole basis
of electrostatic control.
1991, 327. (p) Wu, Y.-D.; Houk, K. N.; Florez, J.; Trost, B. M. J. Org.
Chem. 1991, 56, 3656. (q) Wu, Y.-D.; Tucker, J. A.; Houk, K. N. J. Am.
Chem. Soc. 1991, 113, 5018. (r) Frenking, G.; K o¨ hler, K. F.; Reetz, M. T.
Tetrahedron 1991, 47, 8991-9005. (s) Frenking, G.; K o¨ hler, K. F.; Reetz,
M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1146. (t) Wong, S. S.; Paddon-
Row, M. N. Aust. J. Chem 1991, 44, 765. (u) Wu, Y.-D.; Houk, K. N.;
Paddon-Row, M. N. Angew. Chem., Int. Ed. Engl. 1992, 31, 1019. (v)
Coxon, J. M.; Luibrand, R. T. Tetrahedron Lett. 1993, 34, 7093-7097.
(
w) Li, H.; le Noble, W. J. Recl. TraV. Chim. Pays-Bas. 1992, 111, 199.
(x) Huang, X. L.; Dannenberg, J. J.; Duran, M.; Bertr a´ n, J. J. Am. Chem.
Soc. 1993, 115, 4024. (y) Huang, X. L.; Dannenberg, J. J. J. Am. Chem.
Soc. 1993, 115, 6017. (z) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1993,
115, 9614. (aa) Williams, L.; Paddon-Row, M. N. J. Chem. Soc., Chem.
Commun. 1994, 353. (bb) Gung, B. W.; Wolf, M. A.; Mareska, D. A.;
Karipides, A. J. Org. Chem. 1994, 59, 4899. (cc) Coxon, J. M.; Houk, K.
N.; Luibrand, R. T. J. Org. Chem. 1995, 60, 418. (dd) Gung, B. W.; Yanik,
M. M. J. Org. Chem. 1996, 61, 947.
(12) (a) Boone, J. R.; Ashby, E. C. In Topics in Stereochemistry; Allinger,
N. L., Eliel, E. L., Eds.; Interscience: New York, 1979. (b) Wigfield, D.
C. Tetrahedron 1979, 35, 4449. (c) Haubenstock, H.; Eliel, E. L. J. Am.
Chem. Soc. 1962, 84, 2363. (d) Fort, Y.; Feghouli, A.; Vanderesse, R.;
Caub e` re, P. J. Org. Chem. 1990, 55, 5911.
(
5) (a) Yoshikawa, K.; Hashimoto, M.; Morishima, L. J. J. Am. Chem.
Soc. 1974, 96, 288. (b) DeLoth, P. C. R. Acad. Sci. Ser. C 1974, 279C,
31.
3
(
(
(
6) Adcock, W.; Cotton, J.; Trout, N. A. J. Org. Chem. 1994, 59, 1867.
7) Gung, B. W.; Yanik, M. M. J. Org. Chem. 1996, 61, 947.
8) (a) Cheung, C.-K.; Tseng, L.-T.; Lin, M.-h.; Srivastava, S.; le Noble,
W. J. J. Am. Chem. Soc. 1986, 108, 1598. (b) Li, H.; le Noble, W. J.
Tetrahedron Lett. 1990, 31, 4391.
(9) Wipf, P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 11678.
(13) Ho, Y.; Squires, R. R. J. Am. Chem. Soc. 1992, 114, 10961.