Paper
Dalton Transactions
absorption correction was provided with a multi-scan method
using spherical harmonics, implemented in the SCALE3
ABSPACK scaling algorithm of the CrysAlisPro program
package (Tmin = 0.970, Tmax = 1.000).26 The structure was
solved by direct methods and refined against F2 within the ani-
sotropic approximation for all non-hydrogen atoms using the
OLEX2 program package27 with SHELXS and SHELXL
modules.28 All H atoms were placed in idealized positions and
constrained to ride on their parent atoms with Uiso = nUeq (n =
1.5 for CH3 groups and n = 1.2 for other H atoms). During the
refinement, bonds in the solvent DMF molecule were con-
strained to have fixed values (1.25 Å for O1S–C1S, 1.35 Å for
C1S–N1S, and 1.45 Å for N1S–C2S and N1S–C3S) to be within
0.01 Å. Also, anisotropic thermal parameters of all non-hydro-
gen atoms in this molecule were restrained to be approxi-
mately equal within 0.02 Å2. The final refinement converged at
wR2 = 0.152 for all 7391 reflections (R1 = 0.071 for 3849 reflec-
tions with F > 4σ(F), S = 0.92). CCDC 1049390.
Y. H. Lan, W. Wernsdorfer, C. E. Anson, L. F. Chibotaru
and A. K. Powell, Angew. Chem., Int. Ed., 2010, 49, 7583–
7587; (d) S. K. Langley, L. Ungur, N. F. Chilton,
B. Moubaraki, L. F. Chibotaru and K. S. Murray, Chem. –
Eur. J., 2011, 17, 9209–9218; (e) J. A. Sheikh, S. Goswami
and S. Konar, Dalton Trans., 2014, 43, 14577–14585.
3 (a) L. John and P. Sobota, Acc. Chem. Res., 2014, 47, 470–481;
(b) G. A. Timco, E. J. L. McInnes and R. E. P. Winpenny,
Chem. Soc. Rev., 2013, 42, 1796–1806; (c) S. K. Mandal and
H. W. Roesky, Acc. Chem. Res., 2012, 45, 298–307.
4 D. S. Nesterov, O. V. Nesterova, V. N. Kokozay and
A. J. L. Pombeiro, Eur. J. Inorg. Chem., 2014, 4496–4517.
5 O. V. Nesterova, E. N. Chygorin, V. N. Kokozay, V. V. Bon,
I. V. Omelchenko, O. V. Shishkin, J. Titis, R. Boca,
A. J. L. Pombeiro and A. Ozarowski, Dalton Trans., 2013, 42,
16909–16919.
6 E. N. Chygorin, O. V. Nesterova, J. A. Rusanoya,
V. N. Kokozay, V. V. Bon, R. Boca and A. Ozarowski, Inorg.
Chem., 2012, 51, 386–396.
Magnetic measurements
7 D. S. Nesterov, E. N. Chygorin, V. N. Kokozay, V. V. Bon,
R. Boca, Y. N. Kozlov, L. S. Shul’pina, J. Jezierska,
A. Ozarowski, A. J. L. Pombeiro and G. B. Shul’pin, Inorg.
Chem., 2012, 51, 9110–9122.
8 Unpublished results.
9 CSD (version 5.34; May 2013): F. H. Allen, Acta Crystallogr.,
Sect. B: Struct. Sci., 2002, 58, 380.
The magnetic data were obtained with the SQUID apparatus
(MPMS-XL7, Quantum Design) using the RSO mode of detec-
tion. The susceptibility measured at B = 0.1 T has been cor-
rected for the underlying diamagnetism and converted to the
effective magnetic moment. The magnetization has been
measured at two temperatures: T = 2.0 and 4.6 K.
10 (a) J. M. Clemente-Juan, C. Mackiewicz, M. Verelst,
F. Dahan, A. Bousseksou, Y. Sanakis and J. P. Tuchagues,
Inorg. Chem., 2002, 41, 1478–1491; (b) H. Oshio,
N. Hoshino and T. Ito, J. Am. Chem. Soc., 2000, 122, 12602–
12603; (c) H. Oshio, N. Hoshino, T. Ito and M. Nakano,
J. Am. Chem. Soc., 2004, 126, 8805–8812.
11 (a) J. M. Thorpe, R. L. Beddoes, D. Collison, C. D. Garner,
M. Helliwell, J. M. Holmes and P. A. Tasker, Angew. Chem., Int.
Ed., 1999, 38, 1119–1121; (b) I. A. Gass, C. J. Milios, A. Collins,
F. J. White, L. Budd, S. Parsons, M. Murrie, S. P. Perlepes and
E. K. Brechin, Dalton Trans., 2008, 2043–2053.
Acknowledgements
This work has been partially supported by the Foundation for
Science and Technology (FCT), Portugal (project UID/QUI/
00100/2013, fellowship SFRH/BPD/63710/2009). Grant agencies
of Slovakia (VEGA 1/0522/14, APVV-14-0078 and APVV-14-0073)
are acknowledged for financial support.
12 I. A. Gass, C. J. Milios, A. G. Whittaker, F. P. Fabiani,
S. Parsons, M. Murrie, S. P. Perlepes and E. K. Brechin,
Inorg. Chem., 2006, 45, 5281–5283.
Notes and references
1 (a) G. E. Kostakis, S. P. Perlepes, V. A. Blatov,
D. M. Proserpio and A. K. Powell, Coord. Chem. Rev., 2012, 13 (a) E. M. Pineda, F. Tuna, Y. Z. Zheng, S. J. Teat,
256, 1246–1278; (b) Y. Z. Zheng, G. J. Zhou, Z. P. Zheng and
R. E. P. Winpenny, Chem. Soc. Rev., 2014, 43, 1462–1475;
(c) J. W. Sharples and D. Collison, Coord. Chem. Rev., 2014,
260, 1–20; (d) S. Schmidt, D. Prodius, G. Novitchi,
V. Mereacre, G. E. Kostakis and A. K. Powell, Chem.
Commun., 2012, 48, 9825–9827; (e) D. S. Nesterov,
J. Jezierska, O. V. Nesterova, A. J. L. Pombeiro and
A. Ozarowski, Chem. Commun., 2014, 50, 3431–3434.
R. E. P. Winpenny, J. Schnack and E. J. L. McInnes, Inorg.
Chem., 2014, 53, 3032–3038; (b) K. H. Zangana,
E. M. Pineda, E. J. L. McInnes, J. Schnack and
R. E. P. Winpenny, Chem. Commun., 2014, 50, 1438–1440;
(c) S. Mameri, A. M. Ako, F. Yesil, M. Hibert, Y. H. Lan,
C. E. Anson and A. K. Powell, Eur. J. Inorg. Chem., 2014,
4326–4334; (d) A. M. Ako, Y. H. Lan, O. Hampe,
E. Cremades, E. Ruiz, C. E. Anson and A. K. Powell, Chem.
Commun., 2014, 50, 5847–5850; (e) I. A. Kuhne,
N. Magnani, V. Mereacre, W. Wernsdorfer, C. E. Ansona
and A. K. Powell, Chem. Commun., 2014, 50, 1882–1885.
2 (a)
M.
Charalambous,
E.
E.
Moushi,
C. Papatriantafyllopoulou, W. Wernsdorfer, V. Nastopoulos,
G. Christou and A. J. Tasiopoulos, Chem. Commun., 2012,
48, 5410–5412; (b) V. Mereacre, Y. H. Lan, R. Clerac, 14 (a) V. G. Kessler, Chem. Commun., 2003, 1213–1222;
A. M. Ako, W. Wernsdorfer, G. Buth, C. E. Anson and
A. K. Powell, Inorg. Chem., 2011, 50, 12001–12009;
(c) J. Rinck, G. Novitchi, W. Van den Heuvel, L. Ungur,
(b) E. A. Buvaylo, O. V. Nesterova, V. N. Kokozay,
O. Y. Vassilyeva, B. W. Skelton, R. Boca and D. S. Nesterov,
Cryst. Growth Des., 2012, 12, 3200–3208.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015