Journal of the American Chemical Society
Page 4 of 5
glycosyltransferases. Bioorg. Med. Chem. 2000, 8, 1937. (f) Sun, X.-L.;
ACKNOWLEDGMENT
Kanie, Y.; Guo, C.-T.; Kanie, O.; Suzuki, Y.; Wong, C.-H. Syntheses of
C-3-Modified Sialylglycosides as Selective Inhibitors of Influenza
Hemagglutinin and Neuraminidase. Eur. J. Org. Chem. 2000, 2643. (g)
Rillahan, C. D.; Antonopoulos, A.; Lefort, C. T.; Sonon, R.; Azadi, P.;
Ley, K.; Dell, A.; Haslam, S. M.; Paulson, J. C. Global metabolic
inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat.
Chem. Biol. 2012, 8, 661.
(8) Ishiwata, K.; Ido, T.; Nakajima, T.; Ohrui, H.; Kijima-Suda, I.;
Itoh, M. Tumor uptake study of 18F-labeled N-acetylneuraminic acids.
International journal of radiation applications and instrumentation.
Int. J. Rad. Appl. Instrum. B 1990, 17, 363.
(9) (a) Watts, A. G.; Damager, I.; Amaya, M. L.; Buschiazzo, A.;
Alzari, P.; Frasch, A. C.; Withers, S. G. Trypanosoma cruzi Trans-
sialidase Operates through a Covalent Sialyl−Enzyme Intermediate:ꢀ
Tyrosine Is the Catalytic Nucleophile. J. Am. Chem. Soc. 2003, 125,
7532. (b) Buchini, S.; Gallat, F. X.; Greig, I. R.; Kim, J. H.; Wakatsuki,
S.; Chavas, L. M.; Withers, S. G. Tuning Mechanism-Based Inactivators
of Neuraminidases: Mechanistic and Structural Insights. Angew.
Chem. Int. Ed. Engl. 2014, 53, 3382. (c) Kim, J. H.; Resende, R.;
Wennekes, T.; Chen, H. M.; Bance, N.; Buchini, S.; Watts, A. G.;
Pilling, P.; Streltsov, V. A.; Petric, M.; Liggins, R.; Barrett, S.; McKimm-
Breschkin, J. L.; Niikura, M.; Withers, S. G. Mechanism-Based
Covalent Neuraminidase Inhibitors with Broad-Spectrum Influenza
Antiviral Activity. Science 2013, 340, 71.
1
2
3
4
5
6
7
8
This work was supported by the National Institutes of Health
(AI072155), the National Science Foundation (CHE-1664283),
Academia Sinica and the Kwang Hua Foundation. We thank
Dr. Gembicky (UCSD) for the X-ray diffraction analysis of 4.
REFERENCES
(1) Varki, A. Sialic acids in human health and disease. Trends Mol.
Med. 2008, 14, 351.
9
(2) (a) Liu, Y.-C.; Yen, H.-Y.; Chen, C.-Y.; Chen, C.-H.; Cheng, P.-F.;
Juan, Y.-H.; Chen, C.-H.; Khoo, K.-H.; Yu, C.-J.; Yang, P.-C.; Hsu, T.-
L.; Wong, C.-H. Sialylation and fucosylation of epidermal growth
factor receptor suppress its dimerization and activation in lung cancer
cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 11332. (b) Yen, H.-Y.; Liu,
Y.-C.; Chen, N.-Y.; Tsai, C.-F.; Wang, Y.-T.; Chen, Y.-J.; Hsu, T.-L.;
Yang, P.-C.; Wong, C.-H. Effect of sialylation on EGFR
phosphorylation and resistance to tyrosine kinase inhibition. Proc.
Natl. Acad. Sci. U.S.A. 2015, 112, 6955.
(3) (a) Ashwell, G.; Harford, J. Carbohydrate-specific receptors of
the liver. Annu. Rev. Biochem. 1982, 51, 531. (b) Weigel, P. H.; Yik, J. H.
Glycans as endocytosis signals: the cases of the asialoglycoprotein and
hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta
2002, 1572, 341.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Tsai, C. S.; Yen, H. Y.; Lin, M. I.; Tsai, T. I.; Wang, S. Y.; Huang,
W. I.; Hsu, T. L.; Cheng, Y. S.; Fang, J. M.; Wong, C.-H. Cell-permeable
probe for identification and imaging of sialidases. Proc. Natl. Acad.
Sci. U.S.A. 2013, 110, 2466.
(11) (a) Chokhawala, H. A.; Cao, H.; Yu, H.; Chen, X. Enzymatic
Synthesis of Fluorinated Mechanistic Probes for Sialidases and
Sialyltransferases. J. Am. Chem. Soc. 2007, 129, 10630. (b) McArthur, J.
B.; Yu, H.; Zeng, J.; Chen, X. Converting Pasteurella multocida α2,3-
sialyltransferase 1 (PmST1) to a regioselective α2,6-sialyltransferase by
saturation mutagenesis and regioselective screening. Org. Biomol.
Chem., 2017, 15, 1700.
(12) Petrie, C. R.; Sharma, M.; Simmons, O. D.; Korytnyk, W.
Synthesis of analogs of N-acetylneuraminic acid and their effect on
CMP-sialate synthase. Carbohydr. Res. 1989, 186, 326.
(13) Nakajima, T.; Hori, H.; Ohrui, H.; Meguro, H.; Ido, T. Synthesis
of N-Acetyl-3-fluoro-neuraminic Acids Agric. Biol. Chem. 1988, 52,
1209.
(14) Watts, A. G.; Withers, S. G. The synthesis of some mechanistic
probes for sialic acid processing enzymes and the labeling of a
sialidase from Trypanosoma rangeli. Can. J. Chem 2004, 82, 1581.
(15) During the preparation of this manuscript, the Gilmour group
reported synthesis of 3Fax-Neu5Ac-α2,6-Glc disaccharide using
perbenzylated 3Fax-Neu5Ac -phosphite donor. Hayashi, T.; Kehr, G.;
Gilmour R. Stereospecific α-sialylation by site-selective fluorination.
Angew. Chem. Int. Ed. Engl. 2019, 58, 3814.
(16) Okamoto, K.; Kondo, T.; Goto, T. An effective synthesis of α-
glycosides of N-acetylneuraminic acid derivatives by use of 2-deoxy-
2β-halo-3β-hydroxy-4,7,8,9-tetra-O-acetyl-N-acetylneuraminic acid
methyl ester. Tetrahedron 1987, 43, 5919.
(17) The reagents screened: DAST, PyFlour, Deoxo-fluor®, TFFH,
PhenofluorTM, and XtalFluor-M® (Table S3, SI).
(18) Bennua-Skalmowski, B.; Vorbrüggen, H. A facile conversion of
primary or secondary alcohols with n-perfluorobutane-sulfonyl
fluoride/1,8-diazabicyclo[5.4.0]undec-7-ene into their corresponding
fluorides. Tetrahedron Lett. 1995, 36, 2611.
(4) (a) Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.; McBride, R.;
de Vries, R. P.; Glushka, J.; Paulson, J. C.; Boons, G. J. A general strategy
for the chemoenzymatic synthesis of asymmetrically branched N-
glycans. Science 2013, 341, 379. (b) Shivatare, S. S.; Chang, S. H.; Tsai,
T. I.; Tseng, S. Y.; Shivatare, V. S.; Lin, Y. S.; Cheng, Y. Y.; Ren, C. T.;
Lee, C. C.; Pawar, S.; Tsai, C. S.; Shih, H. W.; Zeng, Y. F.; Liang, C. H.;
Kwong, P. D.; Burton, D. R.; Wu, C. Y.; Wong, C. H. Modular synthesis
of N-glycans and arrays for the hetero-ligand binding analysis of HIV
antibodies. Nat. Chem. 2016, 8, 338. (c) Li, L.; Liu, Y.; Ma, C.; Qu, J.;
Calderon, A. D.; Wu, B.; Wei, N.; Wang, X.; Guo, Y.; Xiao, Z.; Song, J.;
Sugiarto, G.; Li, Y.; Yu, H.; Chen, X.; Wang, P. G. Efficient
chemoenzymatic synthesis of an N-glycan isomer library. Chem. Sci.
2015, 6, 5652.
(5) Li, C.; Wang, L.-X. Chemoenzymatic Methods for the Synthesis
of Glycoproteins. Chem. Rev. 2018, 118, 8359.
(6) (a) Lin, C.-W.; Tsai, M.-H.; Li, S.-T.; Tsai, T.-I.; Chu, K.-C.; Liu,
Y.-C.; Lai, M.-Y.; Wu, C.-Y.; Tseng, Y.-C.; Shivatare, S. S.; Wang, C.-H.;
Chao, P.; Wang, S.-Y.; Shih, H.-W.; Zeng, Y.-F.; You, T.-H.; Liao, J.-Y.;
Tu, Y.-C.; Lin, Y.-S.; Chuang, H.-Y.; Chen, C.-L.; Tsai, C.-S.; Huang, C.-
C.; Lin, N.-H.; Ma, C.; Wu, C.-Y.; Wong, C.-H. A common glycan
structure on immunoglobulin
G for enhancement of effector
functions. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 10611. (b) Tsai, T.-I.; Li,
S.-T.; Liu, C.-P.; Chen, K. Y.; Shivatare, S. S.; Lin, C.-W.; Liao, S.-F.; Lin,
C.-W.; Hsu, T.-L.; Wu, Y.-T.; Tsai, M.-H.; Lai, M.-Y.; Lin, N.-H.; Wu,
C.-Y.; Wong, C.-H. An Effective Bacterial Fucosidase for Glycoprotein
Remodeling. ACS Chem. Biol. 2017, 12, 63. (c) Liu, C.-P.; Tsai, T.-I.;
Cheng, T.; Shivatare, V. S.; Wu, C.-Y.; Wu, C.-Y.; Wong, C.-H.
Glycoengineering of antibody (Herceptin) through yeast expression
and in vitro enzymatic glycosylation. Proc. Natl. Acad. Sci. U.S.A. 2018,
115, 720.
(7) (a) Gantt, R.; Millner, S.; Binkley, S. B. Inhibition of N-
Acetylneuraminic Acid Aldolase by 3-Fluorosialic Acid. Biochemistry
1964, 3, 1952. (b) Hagiwara, T.; Kijima-Suda, I.; Ido, T.; Ohrui, H.;
Tomita, K. Inhibition of bacterial and viral sialidases by 3-fluoro-N-
acetylneuraminic acid. Carbohydr. Res. 1994, 263, 167. (c) Burkart, M.
D.; Zhang, Z.; Hung, S.-C.; Wong, C.-H. A New Method for the
Synthesis of Fluoro-Carbohydrates and Glycosides Using Selectfluor.
J. Am. Chem. Soc. 1997, 119, 11743. (d) D. Burkart, M.; P. Vincent, S.;
Wong, C.-H. An efficient synthesis of CMP-3-fluoroneuraminic acid.
Chem. Commun. 1999, 1525. (e) Burkart, M. D.; Vincent, S. P.; Duffels,
A.; Murray, B. W.; Ley, S. V.; Wong, C.-H. Chemo-enzymatic synthesis
of fluorinated sugar nucleotide: useful mechanistic probes for
(19) Cao, H.; Li, Y.; Lau, K.; Muthana, S.; Yu, H.; Cheng, J.;
Chokhawala, H. A.; Sugiarto, G.; Zhang, L.; Chen, X. Sialidase
substrate specificity studies using chemoenzymatically synthesized
sialosides containing C5-modified sialic acids. Org. Biomol. Chem.,
2009, 7, 5137.
ACS Paragon Plus Environment