Y. K. Kang et al. / Tetrahedron Letters 52 (2011) 3247–3249
3249
R4
N
R4
N
O
O
O
O
cat. 1c (5 mol%)
P(OMe)2
+
P(OMe)2
*
THF, rt, 2 h
5a, R4 = H
5b, R4 = Me
2a
6a, 72%, 99% ee
6b, 78%, 95% ee
Scheme 1.
J. Am. Chem. Soc. 2005, 127, 4154; (h) Bandini, M.; Fagioli, M.; Melchiorre, P.;
Melloni, A.; Umani-Ronchi, A. Tetrahedron Lett. 2003, 44, 5843; (i) Bandini, M.;
Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Helv. Chim. Acta 2003, 86, 3753; (j)
Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc.
2003, 125, 10780; (k) Evans, D. A.; Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.; Xu,
R. J. Am. Chem. Soc. 2007, 129, 10029; (l) Takenaka, N.; Abell, J. P.; Yamamoto, H.
J. Am. Chem. Soc. 2007, 129, 742.
(85–99% ee). The best enantioselectivity of FC adducts 4d and 4k
was obtained in toluene, and FC adducts 4i, 4j and 4l was obtained
in CH2Cl2. On the other hand, dimethyl 2-oxo-4-phenyl-but-3-eny-
lphosphonate (2e) could not be alkylated with indole (3a) under
optimal reaction conditions (Table 2, entry 13).
Furthermore, indole derivatives 5 were also used as substrate in
this FC reaction with dimethyl 2-oxo-pent-3-enylphosphonate
(2a). It was found that the corresponding products 6 were obtained
in high yields with excellent enantioselectivities (Scheme 1).
In conclusion, we have developed an efficient catalytic FC reac-
5. Yang, H.; Hong, Y.-T.; Kim, S. Org. Lett. 2007, 9, 2281.
6. For recent selected examples of the enantioselective reactions catalyzed by
chiral palladium complexes, see: (a) Lectard, S.; Hamashima, Y.; Sodeoka, M.
Adv. Synth. Catal. 2010, 352, 2708; (b) Sodeoka, M.; Hamashima, Y. Chem.
Commun. 2009, 5787; (c) Hamashima, Y.; Sasamoto, N.; Umebayashi, N.;
Sodeoka, M. Chem. Asian J. 2008, 3, 1443; (d) Hamashima, Y.; Sasamoto, N.;
Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005,
44, 1525; (e) Smith, A. M. R.; Rzepa, H. S.; White, A. J. P.; Billen, D.; Hii, K. K. J. Org.
Chem. 2010, 75, 3085; (f) Smith, A. M. R.; Billen, D.; Hii, K. K. Chem. Commun.
2009, 3925; (g) Phua, P. H.; Mathew, S. P.; White, A. J. P.; de Vries, J. G.;
Blackmond, D. G.; Hii, K. K. Chem. Eur. J. 2007, 13, 4602.
7. (a) Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420; (b) Moon, H. W.;
Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 291; (c) Kang, Y. K.; Kim, S. M.;
Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847; (d) Kang, S. H.; Kim, D. Y. Adv.
Synth. Catal. 2010, 352, 2783; (e) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860;
(f) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906; (g) Lee, J. H.;
Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779; (h) Kang, Y. K.; Kim, D. Y. J.
Org. Chem. 2009, 74, 5734; (i) Moon, H. W.; Cho, M. J.; Kim, D. Y.
Tetrahedron Lett. 2009, 50, 4896; (j) Kwon, B. K.; Kim, S. M.; Kim, D. Y. J.
Fluorine Chem. 2009, 130, 259; (k) Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron
Lett. 2009, 50, 4674; (l) Kang, S. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2009,
30, 1439; (m) Kwon, B. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1441;
(n) Mang, J. Y.; Kwon, D. G.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 249;
(o) Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659; (p) Jung, S. H.; Kim,
D. Y. Tetrahedron Lett. 2008, 49, 5527; (q) Park, E. J.; Kim, M. H.; Kim, D. Y. J.
Org. Chem. 2004, 69, 6897; (r) Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.;
Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435; (s) Kim, D.
Y.; Park, E. J. Org. Lett. 2002, 4, 545; (t) Kim, D. Y.; Huh, S. C.; Kim, S. M.
Tetrahedron Lett. 2001, 42, 6299; (u) Kim, D. Y.; Huh, S. C. Tetrahedron 2001,
57, 8933.
tion of indoles to c,d-unsaturated b-keto phosphonates using air-
and moisture-stable chiral palladium complexes at room tempera-
ture. The desired d-indolyl b-keto phosphonates 4 were obtained in
high yields, and excellent enantioselectivities (85–99% ee) were
observed for all the substrates examined in this work. We believe
that this report provides a practical method for the preparation
of chiral c-indolyl b-keto phosphonate derivatives, and the avail-
ability of these compounds should facilitate biochemical and
medicinal studies in various fields.
Acknowledgments
Following are results of a study on the ‘Human Resource Devel-
opment Center for Economic Region Leading Industry’ Project, sup-
ported by the Ministry of Education, Science Technology (MEST)
and the National Research Foundation of Korea (NRF).
References and notes
8. (a) Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676; (b) Kim, E. J.;
Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1437; (c) Lee, N. R.; Kim, S.
M.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 829; (d) Kang, Y. K.; Kim, D. Y.
Bull. Korean Chem. Soc. 2008, 29, 2093; (e) Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett
2008, 1821; (f) Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135;
(g) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4265; (h) Kim, H. R.; Kim, D.
Y. Tetrahedron Lett. 2005, 46, 3115; (i) Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett.
2005, 7, 2309.
1. For reviews on Friedel–Crafts alkylation, see: (a) Jrgensen, K. A. Synthesis 2003,
1117; (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004,
43, 550; (c) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005,
1199; (d) Poulsen, T. B.; Jrgensen, K. A. Chem. Rev. 2008, 108, 2903; (e) Tsogoeva,
S. B. Eur. J. Org. Chem. 2007, 1701; (f) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev.
2009, 38, 2190; (g) Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org.
Chem. 2010, 2635; Bandini, M.; Umani-Ronchi, A. Catalytic Asymmetric Friedel–
Crafts Alkylations; Wiley-VCH: Weinheim, 2009; (i) Zeng, M.; You, S.-L. Synlett
2010, 1289.
2. Sundberg, R. J. Indoles; Academic Press: San Diego, 1996; (b) Toyota, M.; Ihara,
M. Nat. Prod. Rep. 1998, 15, 327; (c) Huber, U.; Moore, R. E.; Patterson, G. M. L. J.
Nat. Prod. 1998, 61, 1304; (d) Kinsman, A. C.; Kerr, M. A. J. Am. Chem. Soc. 2003,
125, 14120; (e) Mancini, I.; Guella, G.; Zibrowius, H.; Pietra, F. Tetrahedron 2003,
59, 8757; (f) Kam, T.-S.; Choo, Y.-M. J. Nat. Prod. 2004, 67, 547.
3. (a) Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73; (b) Reddy, R.; Jaquith, J. B.;
Neelagiri, V. R.; Saleh-Hanna, S.; Durst, T. Org. Lett. 2002, 4, 695; (c) King, H. D.;
Meng, Z.; Denhart, D.; Mattson, R.; Kimura, R.; Wu, D.; Gao, Q.; Macor, J. E. Org. Lett.
2005, 7, 3437; (d) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450.
4. (a) Lv, J.; Li, X.; Zhong, L.; Luo, S.; Cheng, J.-P. Org. Lett. 2010, 12, 1096; (b) Liu, Y.;
Shang, D.; Zhou, X.; Zhu, Y.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 180; (c)
Singh, P. K.; Singh, V. K. Org. Lett. 2008, 10, 4121; (d) Blay, G.; Fernandez, I.;
Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601; (e) Evans, D. A.; Fandrick, K. R.; Song,
H.-J. J. Am. Chem. Soc. 2005, 127, 8942; (f) Yamazaki, S.; Iwata, Y. J. Org. Chem.
2006, 71, 739; (g) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcia, J. M.; Linden, A.
9. Typical procedure: To
a stirred solution of (E)-dimethyl 2-oxopent-3-
enylphosphonate (2a, 57.6 mg, 0.3 mmol), Pd-catalyst 1c (16.2 mg,
0.015 mmol) in THF (1.5 mL) was added indole (3a, 41.1 mg, 0.36 mmol) at
room temperature. The reaction mixture was stirred for 48 h at room
temperature. The reaction was diluted with EtOAc (10 mL), then washed with
sat. NH4Cl. The organic layer was dried over anhydrous MgSO4, filtered,
concentrated, and purified by flash column chromatography (EtOAc/Hex:15/1)
to afford (S)-dimethyl 4-(1H-indol-3-yl)-2-oxopentylphosphonate (4a, 71%,
65.9 mg). ½a 2D6:3
ꢀ
= –55.4 (c = 1.0, CHCl3); 1H NMR (200 MHz, CDCl3) d 1.39 (d,
J = 6.9 Hz, 3H), 2.89 (dd, J = 8.1, 16.1 Hz, 1H), 3.00 (d, J = 22.4 Hz, 2H), 3.12 (dd,
J = 5.9, 16.1 Hz, 1H), 3.55–3.66 (m, 1H), 3.70 (d, J = 11.6 Hz, 3H), 3.73 (d,
J = 10.8 Hz, 3H), 6.99 (d, J = 2.4 Hz, 1H), 7.07–7.24 (m, 2H), 7.35 (d, J = 7.8 Hz,
1H), 7.64 (d, J = 7.6 Hz, 1H), 8.30 (br s, 1H); 13C MNR (50 MHz, CDCl3) d 21.1,
26.7, 41.6 (J = 127.5 Hz), 51.7, 53.0 (d, J = 6.1 Hz), 111.3, 119.1, 119.3, 120.4,
121.3, 122.0, 126.2, 136.5, 201.5 (J = 7.0 Hz); MS (ESI): m/z = 310.1 [M+H]+; HPLC
(80:20, n-hexane/i-PrOH, 254 nm, 1.0 mL/min) Chiralpak AS column, tR = 20.0
(minor), 21.5 min (major), 99% ee.