JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
ordered dimension along the (100) direction of the UH
phase, namely the direction perpendicular to the discotic col-
umns. The correlation length gradually increases in the order
of the as-cast, thermally annealed, and electrically aligned
samples, corresponding to 18, 24, and 38 columns in the
3 C. Acikgoz, M. A. Hempenius, J. Huskens, G. J. Vancso, Eur.
Polym. J. 2011, 47, 2033–2052.
4 W. Wu, W. M. Tong, J. Bartman, Y. Chen, R. Walmsley, Z.
Yu, Q. Xia, I. Park, C. Picciotto, J. Gao, S.-Y. Wang, D.
Morecroft, J. Yang, K. K. Berggren, R. S. Williams, Nano Lett.
2
008, 8, 3865–3869.
(
100) direction, respectively. The correlation length obtained
5
B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M.
from the scattering halo with the d-spacing of ꢁ0.36 nm,
which represents the apparent length of the discotic column,
shows that 14 and 38 Tp moieties stack together in the col-
umns of the thermally annealed and electrically aligned sam-
ples, respectively. The correlation length estimation of the
three samples shows that thermal annealing increases the
ordered domain size by a third, while electrical alignment
doubles the ordered domain size. Electrical alignment also
increases the column length to a large extent by inducing
more Tp moieties stacking together, which is much more
effective than thermal annealing. The above results clearly
show that electrical alignment offers a better way for align-
ing discotic LCs, which is crucial for electronic applications.
Whitesides, Chem. Rev. 2005, 105, 1171–1196.
6
G. M. Whitesides, J. P. Mathias, C. T. Seto, Science 1991,
2
54, 1312–1319.
7
X. Y. Yin, C. Ye, X. Ma, E. Q. Chen, X. Y. Qi, X. F. Duan, X. H.
Wan, S. Z. D. Cheng, Q. F. Zhou, J. Am. Chem. Soc. 2003, 125,
6
854–6855.
8
H.-L. Xie, C.-K. Jie, Z.-Q. Yu, X.-B. Liu, H.-L. Zhang, Z. Shen,
E.-Q. Chen, Q.-F. Zhou, J. Am. Chem. Soc. 2010, 132, 8071–
8080.
9
H.-L. Xie, S.-J. Wang, G.-Q. Zhong, Y.-X. Liu, H.-L. Zhang, E.-
Q. Chen, Macromolecules 2011, 44, 7600–7609.
0 Y.-F. Zhu, X.-L. Guan, Z. Shen, X.-H. Fan, Q.-F. Zhou, Macro-
molecules 2012, 45, 3346–3355.
1 L. C. Gao, C. L. Zhang, X. Liu, X. H. Fan, Y. X. Wu, X. F.
Chen, Z. H. Shen, Q. F. Zhou, Soft Matter 2008, 4, 1230–1236.
2 Y. F. Zhao, X. H. Fan, X. H. Wan, X. F. Chen, Y. Yi, L. S.
Wang, X. Dong, Q. F. Zhou, Macromolecules 2006, 39, 948–956.
3 S. Chen, C. Jie, H. Xie, H. Zhang, J. Polym. Sci. Part A:
Polym. Chem. 2012, 50, 3923–3935.
1
1
CONCLUSIONS
1
In summary, we have synthesized an MJLCP, PP12V, which
contains Tp moieties with 12 methylene units as spacers, and
investigated its novel LC phase behavior. With the incorpora-
tion of Tp moieties in the side chains of the MJLCP, PP12V
forms two ordered nanostructures at sub-10-nm length
scales at different temperatures. The low-temperature phase
1
1
2
4 K. Okoshi, T. Hagihara, M. Fujiki, J. Watanabe, Liq. Cryst.
010, 37, 1183–1190.
1
5 I. Paraschiv, M. Giesbers, B. van Lagen, F. C. Grozema, R. D.
of the polymer is a U phase (a 5 2.06 nm) self-organized by
H
Abellon, L. D. A. Siebbeles, A. T. M. Marcelis, H. Zuilhof, E. J.
R. Sudh o€ lter, Chem. Mater. 2006, 18, 968–974.
Tp discotic mesogens. A re-entrant isotropic phase is found
at medium temperatures. And the high-temperature phase is
1
6 I. Paraschiv, K. de Lange, M. Giesbers, B. van Lagen, F. C.
0
a U phase with a larger dimension (a 5 4.07 nm) developed
N
Grozema, R. D. Abellon, L. D. A. Siebbeles, E. J. R. Sudholter, H.
by the rod-like supramolecular mesogen—the MJLCP chain as
a whole. Partially homeotropic alignment of the polymer in
the UH phase formed by the Tp moieties is achieved when
treated with an electric field. Compared with the previously
reported MJLCPs containing Tp moieties with shorter spacers
Zuilhof, A. T. M. Marcelis, J. Mater. Chem. 2008, 18, 5475–5481.
1
7 B. H u€ ser, H. W. Spiess, Macromol. Rapid Commun. 1988, 9,
337–343.
8 B. Hueser, T. Pakula, H. W. Spiess, Macromolecules 1989,
1
22, 1960–1963.
1
0
(PP3V and PP6V)
or MJLCPs with calamitic mesogens
19 H. Ringsdorf, R. W u€ stefeld, E. Zerta, M. Ebert, J. H.
Wendorff, Angew. Chem. Int. Ed. Engl. 1989, 28, 914–918.
8
,9
(
biphenyl or azobenzene), the main chain of PP12V loses
its 2D positional order at low temperatures, and the LC build-
ing block in side chains dominates the ordered self-assembly.
The delicate molecular design based on MJLCPs containing
the Tp discotic LC building block provides an efficient and
modular strategy to construct ordered nanostructures with
tailored dimensions and versatile functions.
20 C. Catry, M. Van der Auweraer, F. C. De Schryver, H. Bengs,
L. H a€ ussling, O. Karthaus, H. Ringsdorf, Macromol. Chem.
Phys. 1993, 194, 2985–2999.
21 M. Werth, H. W. Spiess, Macromol. Rapid Commun. 1993,
1
4, 329–338.
2
2 M. Weck, B. Mohr, B. R. Maughon, R. H. Grubbs, Macromo-
lecules 1997, 30, 6430–6437.
2
3 N. Boden, R. J. Bushby, Z. B. Lu, Liq. Cryst. 1998, 25, 47–58.
ACKNOWLEDGMENTS
2
1
4 D. Stewart, S. G. Mchattie, T. C. Imrie, J. Mater. Chem.
998, 8, 47–51.
The authors acknowledge Yao Liu at ICCAS and Prof. Xiao-Wei
Zhan at the College of Engineering at Peking University for
helpful discussions. This work was supported by the National
Natural Science Foundation of China (Grants 21134001 and
2
5 R. V. Talroze, O. A. Otmakhova, M. A. Koval, S. A. Kuptsov,
N. A. Plat eꢀ , H. Finkelmann, Macromol. Chem. Phys. 2000, 201,
877–881.
20990232).
26 C. T. Imrie, R. T. Inkster, Z. Lu, M. D. Ingram, Mol. Cryst.
Liq. Cryst. 2004, 408, 33–43.
REFERENCES AND NOTES
2
7 W. Kreuder, H. Ringsdorf, P. Tschirner, Macromol. Rapid
Commun. 1985, 6, 367–373.
1
D. Losic, J. G. Mitchell, N. H. Voelcker, Adv. Mater. 2009, 21,
2947–2958.
28 G. Wenz, Macromol. Rapid Commun. 1985, 6, 577–584.
2
D. Losic, G. Rosengarten, J. G. Mitchell, N. H. Voelcker, J.
29 M. M. Green, H. Ringsdorf, J. Wagner, R. W u€ stefeld, Angew.
Chem. Int. Ed. Engl. 1990, 29, 1478–1481.
Nanosci. Nanotechnol. 2006, 6, 982–989.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 295–304
303