M. Sasaki et al. / Tetrahedron Letters 48 (2007) 5697–5700
5699
oxazolidinone 14 was obtained in excellent yield over the
two steps. Following N-methylation (NaH, MeI, DMF,
In summary, an efficient synthesis of dysiherbaine (1)
was achieved in 24 steps and 4.3% overall yield from
di-O-acetyl-L-arabinal. The present synthesis would
allow for the synthesis of various dysiherbaine
analogues to clarify the structure–activity relationship
profiles. Further studies along this line are under way
in our laboratory and will be reported in due course.
8
8%), the tert-butyldimethylsilyl (TBS) group was
removed (TBAF, THF, 84%) to afford primary alcohol
5. At this stage, the stereochemistry of the C8 and C9
positions was established by NOEs as shown in Figure
1
2
.
Oxidation of 15 under Parikh–Doering conditions
1
4
(
SO Æpyridine, Et N, DMSO, CH Cl ) followed by
3 3 2 2
Acknowledgment
Horner–Wadsworth–Emmons olefination using phos-
1
5
phonate 16 and tetramethylguanidine generated ena-
mide ester 17 in 73% yield over the two steps (E:Z =
ca. 1:14) (Scheme 5). Hydrogenation of 17 in the
presence of 5 mol % of [Rh(I)(COD)-(S,S)-Et-
This work was financially supported by a Grant-in-Aid
for Scientific Research on Priority Area ‘Creation of
Biologically Functional Molecules’ (No. 16073202) from
the Ministry of Education, Culture, Sports, Science, and
Technology, Japan.
+
ꢀ
16,17
DuPHOS] OTf catalyst
in THF under pressurized
hydrogen (0.9 MPa) at room temperature proceeded
smoothly to give the desired amino acid derivative 18
in 83% yield. The corresponding diastereomer could
1
not be detected in the 500 MHz H NMR spectra. The
References and notes
stereochemistry at C2 was tentatively assigned based
1
6
10d
on Burk’s empirical rule and our previous results.
1. For reviews, see: (a) Dingledine, R.; Borges, K.; Bowie,
D.; Trynelis, S. F. Pharmacol. Rev. 1999, 51, 7–61; (b)
Madden, D. R. Nature Rev. Neurosci. 2002, 3, 91–101; (c)
Mayer, M. L. Curr. Opin. Neurobiol. 2005, 15, 282–288;
d) Mayer, M. L. Nature 2006, 440, 456–462.
2. Sakai, R.; Kamiya, H.; Murata, M.; Shimamoto, K. J.
Am. Chem. Soc. 1997, 119, 4112–4116.
. Sakai, R.; Koike, T.; Sasaki, M.; Shimamoto, K.; Oiwa,
C.; Yano, A.; Suzuki, K.; Tachibana, K.; Kamiya, H. Org.
Lett. 2001, 3, 1479–1482.
. For a review, see: Sakai, R.; Swanson, G. T.; Sasaki, M.;
Shimamoto, K.; Kamiya, H. Cent. Nerv. Syst. Agents
Med. Chem. 2006, 6, 83–108.
. Sakai, R.; Swanson, G. T.; Shimamoto, K.; Contractor,
A.; Ghetti, A.; Tamura-Horikawa, Y.; Oiwa, C.; Kamiya,
H. J. Pharmacol. Exp. Ther. 2001, 296, 650–663.
. Swanson, G. T.; Green, T.; Sakai, R.; Contractor, A.;
Che, W.; Kamiya, H.; Heinemann, S. F. Neuron 2002, 34,
Finally, global deprotection of 18 under alkaline hydro-
lysis conditions (40% NaOH, MeOH, 45 °C) furnished
1
8
dysiherbaine (1) in 84% yield. The synthetic dysiherba-
(
ine was identical to the natural material as judged by the
1
13
H and C NMR spectra. Moreover, the in vivo toxicity
of the synthetic compound against mice by intracerebro-
ventricular injection was similar to that of the natural
specimen.
3
4
5
6
7
8
9
5
89–598.
. Sanders, J. M.; Ito, K.; Settimo, L.; Pentikainen, O. T.;
Shoji, M.; Sasaki, M.; Johnson, M. S.; Sakai, R.; Swanson,
G. T. J. Pharmacol. Exp. Ther. 2005, 314, 1068–1078.
. Sanders, J. M.; Pentikainen, O. T.; Settimo, L.; Pentikai-
nen, U.; Shoji, M.; Sasaki, M.; Sakai, R.; Johnson, M. S.;
Swanson, G. T. Mol. Pharmacol. 2006, 69, 1849–1860.
. For total synthesis of dysiherbaine, see: (a) Snider, B. B.;
Hawryluk, N. A. Org. Lett. 2000, 2, 635–638; (b) Sasaki,
M.; Koike, T.; Sakai, R.; Tachibana, K. Tetrahedron Lett.
2000, 41, 3923–3926; (c) Masaki, H.; Maeyama, J.;
Kamada, K.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S.
J. Am. Chem. Soc. 2000, 122, 5216–5217; (d) Phillips, D.;
Chamberlin, A. R. J. Org. Chem. 2002, 67, 3194–3201.
Figure 2. Key NOEs observed for compound 15.
O
O
O
O
Me
H
Me
H
N
N
1. SO3 pyr
.
NHCbz
O
HO
O
MeO2C
Et3N, DMSO
2
. 16, TMG
73% (2 steps)
MeO2C
O
MeO2C
O
H
H
1
5
17
1
0. For total synthesis of neodysiherbaine A, see: (a) Ref. 2;
b) Lygo, B.; Slack, D.; Wilson, C. Tetrahedron Lett. 2005,
(
H2 (0.9 MPa)
NHCbz
P(O)(OMe)2
[
Rh(I)(COD)-(S,S)-
83%
46, 6629–6632; (c) Takahashi, K.; Matsumura, T.; Corbin,
G. R. M.; Ishihara, J.; Hatakeyama, S. J. Org. Chem.
006, 71, 4227–4231; (d) Shoji, M.; Akiyama, N.; Tsu-
bone, K.; Lash, L. L.; Sanders, J. M.; Swanson, G. T.;
Sakai, R.; Shimamoto, K.; Oikawa, M.; Sasaki, M. J. Org.
Chem. 2006, 71, 5208–5220.
+
—
EtDuPHOS] OTf
MeO2C
2
1
6
O
O
Me
H
NHMe
N
O
NH2
NaOH, MeOH
OH 45 ºC
MeO2C
NHCbz
O
H
H
HO2C
O
1
1. (a) Sasaki, M.; Maruyama, T.; Sakai, R.; Tachibana, K.
Tetrahedron Lett. 1999, 40, 3195–3198; (b) Shoji, M.;
Shiohara, K.; Oikawa, M.; Sakai, R.; Sasaki, M. Tetra-
hedron Lett. 2005, 46, 5559–5562; (c) Sasaki, M.; Tsubone,
K.; Shoji, M.; Oikawa, M.; Shimamoto, K.; Sakai, R.
Bioorg. Med. Chem. Lett. 2006, 16, 5784–5787.
HO2C
O
MeO2C
8
4%
H
dysiherbaine (1)
1
8
Scheme 5. Completion of total synthesis of dysiherbaine.