1
functional groups such as cationic charges, metal
5
to display porphyrinic dyes; however, studies using a scaf-
folding material that can both precisely control the position
and relative orientation of porphyrins and provide a face-
to-face array of porphyrins have not yet been introduced.
Peptoids are a class of peptidomimetic polymers based
1
binders, a catalytic active site, and steroid hormones.
6
17
18
1
0
on oligo-N-substituted glycine backbones. The chemical
structure of peptoids differs from that of peptides only in
that side chains are attached to the backbone amide
nitrogen instead of the R-carbon. As a bioinspired material,
peptoids are monodisperse and sequence specific; there-
fore, precise control of chain length, side chain func-
tionality, and monomer sequence is possible. On the other
hand, the non-natural tertiary amide bonds render them
highly stable against proteolysis compared to their natural
1
1
counterparts. Peptoid oligomers can be readily synthe-
sized up to ∼50 monomers using a conventional solid-
1
2
phase peptide synthesis technique. These peptoid oligo-
mers, if R-chiral side chains are incorporated, can form
well-defined helical structures that are induced by local
1
3
steric and electronic interactions. The conformations
of peptoid helices have been characterized as stable poly-
proline type-I-like structures which exhibit a periodicity of
three residues per turn (i.e., helical turns are repeated for
every three residues) with a pitch length of approximately
1
3aÀc,14
˚
6
.0 A.
These unique structural features of peptoids
are proven to be useful for creating novel functional
molecules by facilitating a position-specific display of
(
7) Fendt, L.; Bouamaied, I.; Thoni, S.; Amiot, N.; Stulz, E. J. Am.
Chem. Soc. 2007, 129, 15319.
8) (a) Nam, Y. S.; Shin, T.; Park, H.; Magyar, A. P.; Choi, K.;
Fantner, G.; Nelson, K. A.; Belcher, A. M. J. Am. Chem. Soc. 2010, 132,
(
Figure 1. Distance, orientation, and number controlled porphyrinÀ
1462. (b) Endo, M.; Fujitsuka, M.; Majima, T. Chem.;Eur. J. 2007, 13,
8660.
peptoid conjugates (PPCs).
(
9) Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc.
Rev. 2008, 37, 109.
10) Simons, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.;
Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe,
C. K.; Spellmeyer, D. C.; Tan, R.; Frankel, A. D.; Santi, D. V.; Cohen,
F. E.; Bartlett, P. A. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9367.
(
By employing a biomimetic molecular design approach,
our goal is to construct an array of photosensitizers
displayed on the peptoid helix and to study energy transfer
events upon various arrangements of the photosensitizers.
In due course, we present herein an efficient synthetic
strategy for a face-to-face arrangement of porphyrins on
peptoid helices. Unlike other natural or synthetic poly-
mers, peptoid helices exhibit unique stability and well-
defined structural features in various conditions such as
(
11) Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr,
J. M.; Moos, W. H. Drug Dev. Res. 1995, 35, 20.
12) (a) Murphy, J. E.; Uno, T.; Hamer, J. D.; Cohen, F. E.; Dwarki,
(
V.; Zuckermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1517. (b)
Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am.
Chem. Soc. 1992, 114, 10646.
(
13) (a) Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand,
P.; Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.;
Zuckermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4303. (b)
Armand, P.; Kirshenbaum, K.; Goldsmith, R. A.; Farr-Jones, S.;
Barron, A. E.; Truong, K. T. V.; Dill, K. A.; Mierke, D. F.; Cohen,
F. E.; Zuckermann, R. N.; Bradley, E. K. Proc. Natl. Acad. Sci. U.S.A.
13e
solvents and temperature, providing an excellent scaf-
folding material. As shown in Figure 1, we designed four
porphyrinÀpeptoid conjugates (PPCs) with precisely de-
fined distance, orientation, and number of porphyrins
(1À4). Distance dependency can be examined by compar-
ing PPCs having two porphyrins positioned 1 pitch (1) and
2 pitches (2) apart. Additionally, two porphyrins in a
distorted orientation (3), three porphyrins on one face
1998, 95, 4309. (c) Wu, C. W.; Kirshenbaum, K.; Sanborn, T. J.; Patch,
J. A.; Huang, K.; Dill, K. A.; Zuckermann, R. N.; Barron, A. E. J. Am.
Chem. Soc. 2003, 125, 13525. (d) Gorske, B. C.; Bastian, B. L.; Gaske,
G. D.; Balckwell, H. E. J. Am. Chem. Soc. 2007, 129, 8928. (e) Sanborn,
T. J.; Wu, C. W.; Zuckermann, R. N.; Barron, A. E. Biopolymers 2002,
6
3, 12.
14) Stringer, J. R.; Crapster, J. A.; Guzei, I. A.; Blackwell, H. E.
J. Am. Chem. Soc. 2011, 133, 15559.
15) (a) Chongsiriwatana, N. P.; Patch, J. A.; Gzyzewski, A. M.;
(
(
(
4), and an unstructured analogue of 1 (5) were prepared.
Dohm, M. T.; Ivankin, A.; Gidalevitz, D.; Zuckermann, R. N.; Barron,
A. E. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2794. (b) Seo, J.; Ren, G.;
Liu, H.; Miao, Z.; Park, M.; Wang, Y.; Miller, T. M.; Barron, A. E.;
Cheng, Z. Bioconjugate Chem. 2012, 23, 1069. (c) Huang, W.; Seo, J.;
Lin, J. S.; Barron, A. E. Mol. Biosyst. 2012, 8, 2626. (d) Schr o€ der, T.;
Niemeier, N.; Afonin, S.; Ulrich, A. S.; Krug, H. F.; Br €a se, S. J. Med.
Chem. 2008, 51, 376.
Preliminary spectroscopic studies such as UVÀvis and
(17) Maayan, G.; Ward, M. D.; Kirshenbaum, K. Proc. Natl. Acad.
Sci. U.S.A. 2009, 106, 13679.
(18) (a) Holub, J. M.; Garabedian, M. J.; Kirshenbaum, K. Mol.
Biosyst. 2011, 7, 337. (b) Levine, P. M.; Imberg, K.; Garabedian, M. J.;
Kirshenbaum, K. J. Am. Chem. Soc. 2012, 134, 6912.
(16) Lee, B. C.; Chu, T. K.; Dill, K. A.; Zuckermann, R. N. J. Am.
Chem. Soc. 2008, 130, 8847.
Org. Lett., Vol. 15, No. 7, 2013
1671