Journal of Natural Products
Article
was stirred for 24 h at room temperature, and 1 mL of H2O was then
added. The solution was extracted by 5 mL of CH2Cl2 and the organic
phase was concentrated under reduced pressure. Then the residue was
purified by semipreparative HPLC (83% MeOH−H2O) to yield (S)-
MTPA ester 3a (1.0 mg, tR = 9.2 min). By the same procedure, (R)-
MTPA ester 3b (1.7 mg, tR 9.2 min) was obtained from the reaction of
ACKNOWLEDGMENTS
■
This work was supported by grants from the National Natural
Science Foundation of China (Nos. 21172204, 30670219, and
30770235), from the National Basic Research Program of
China (No. 2010CB833800), from the Major Program for
Technique Development Research of New Drugs in China
(No. 2009ZX09103-046), and from the Shandong Natural
Science Foundation (No. ZR2009CQ030).
1
3 (2 mg) with (S)-MTPACl (8 μL). (S)-MTPA ester (3a): H NMR
(CDCl3, 600 MHz) δ 7.12 (1H, d, J = 7.1 Hz, H-4), 6.47 (1H, d, J =
9.4 Hz, H-8), 6.22 (1H, d, J = 7.1 Hz, H-5), 5.94 (1H, m, H-9), 2.51
(2H, q, J = 7.7 Hz, H-12), 2.00 (3H, s, H-11), 1.40 (3H, d, J = 6.6 Hz,
H-10), 1.18 (3H, t, J = 7.7 Hz, H-13); ESIMS m/z 425 [M + H]+.
REFERENCES
1
■
(R)-MTPA ester (3b): H NMR (CDCl3, 600 MHz) δ 7.11 (1H, d, J
(1) Ber
́
dy, J. J. Antibiot. 2005, 58, 1−26.
= 7.1 Hz, H-4), 6.36 (1H, d, J = 8.8 Hz, H-8), 6.20 (1H, d, J = 7.1 Hz,
H-5), 5.91 (1H, m, H-9), 2.51 (2H, q, J = 7.7 Hz, H-12), 1.97 (3H, s,
H-11), 1.47 (3H, d, J = 6.1 Hz, H-10), 1.18 (3H, t, J = 7.7 Hz, H-13);
ESIMS m/z 425 [M + H]+.
(2) Kwon, H. C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. J. Org.
Chem. 2009, 74, 675−684.
(3) Kwon, H. C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. J. Am.
Chem. Soc. 2006, 128, 1622−1632.
X-ray Structure Determination of Nocazine A (4). Compound
4 was obtained as a colorless monoclinic crystal: molecular formula
C22H22N2O4, space group P21/n, a = 7.1550(8) Å, b = 25.307(2) Å, c
= 12.83410(11) Å, α = 90.00°, β = 123.880(2)°, γ = 90.00°, V =
1929.3(3) Å3, Z = 4, Dcalcd = 1.303 Mg/m3, μ = 0.090 mm−1, F(000) =
800, crystal size 0.28 × 0.17 × 0.15 mm, T = 298(2) K. A total of 3413
unique reflections (2θ < 50°) were collected on a CCD area detector
diffractometer with graphite-monochromated Mo Kα radiation (λ =
0.710 73 Å). The structure was solved by direct methods (SHELXS-
97) and expanded using Fourier techniques (SHELXL-97). The final
cycle of full-matrix least-squares refinement was based on 3413 unique
reflections (2θ < 50°) and 257 variable parameters and converged with
unweighted and weighted agreement factors of R1 = 0.1468, wR2 =
0.0882, and R = 0.0525 for I > 2σ(I) data. Crystallographic data
(excluding structure factors) for structure 4 in this paper have been
deposited with the Cambridge Crystallographic Data Centre as
supplementary publication number CCDC 809170. Copies of the
data can be obtained, free of charge, on application to the CCDC, 12
Union Road, Cambridge CB2 1EZ, U.K. (fax, +44 (0)-1223-336033;
Absolute Configuration Determination of Phenylalanine of
6 by Marfey’s Method.16 A solution of 6 (1.5 mg) in 6 M HCl (1
mL) was heated to 105 °C for 19 h. The solution was then evaporated
to dryness and the residue redissolved in H2O (250 μL). A 50 μL
portion of the acid hydrolysate solution was then placed in a 1 mL
reaction vial and treated with a 1% solution of FDAA (200 μL) in
acetone followed by 1.0 M NaHCO3 (40 μL). The reaction mixture
was heated at 45 °C for 1 h, cooled to room temperature, and then
acidified with 2.0 M HCl (20 μL). In a similar fashion, standard D- and
L-Phe were derivatized separately. The derivatives of the hydrolysates
and standard amino acids were subjected to HPLC analysis (YMC C18
column; 5 μm, 4.6 × 250 mm; 1.0 mL/min) at 30 °C using the
following gradient program: solvent A, water + 0.2% TFA; solvent B,
MeCN; linear gradient 0 min 25% B, 40 min 60% B, 45 min 100% B;
UV detection at 340 nm. The retention times for the FDAA derivatives
of hydrolysates of 6, standard L-Phe, and D-Phe were 21.0, 21.0, and
24.6 min, respectively (Figure S34, Supporting Information).
(4) Buchanan, G. O.; Williams, P. G.; Feling, R. H.; Kauffman, C. A.;
Jensen, P. R.; Fenical, W. Org. Lett. 2005, 7, 2731−2734.
(5) Boonlarppradab, C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W.
Org. Lett. 2008, 10, 5505−5508.
(6) Sato, S.; Iwata, F.; Mukai, T.; Yamada, S.; Takeo, J.; Abe, A.;
Kawahara, H. J. Org. Chem. 2009, 74, 5502−5509.
(7) Perez, M.; Crespo, C.; Schleissner, C.; Rodriguez, P.; Zuniga, P.;
Reyes, F. J. Nat. Prod. 2009, 72, 2192−2194.
(8) Asolkar, P. N.; Freel, K. C.; Jensen, P. R.; Fenical, W.;
Kondratyuk, T. P.; Park, E.; Pezzuto, J. M. J. Nat. Prod. 2009, 72, 396−
402.
(9) McArthur, K. A.; Mitchell, S. S.; Tsueng, G.; Rheingold, A.;
White, D. J.; Grodberg, J.; Lam, K. S.; Potts, B. C. M. J. Nat. Prod.
2008, 71, 1732−1737.
(10) Zhang, X. L.; Li, P. Y.; Li, P.; Xu, Y. Y. Adv. Mar. Sci. 2005, 23,
87−95.
(11) Liu, F.; Ye, S. Y.; Tang, Y. Q.; Chuan, Q.; Tian, M. J. C.; Wu, X.
L. Chin. J. Appl. Environ. Biol. 2007, 13, 691−696.
(12) Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Kiran, S.; Ravji,
R.; Natarajaseenivasan, K.; Hema, T. A. Appl. Microbiol. Biotechnol.
2009, 83, 435−445.
(13) Ali, M. I.; Ahmad, M. S.; Hozzein, W. Aust. J. Basic Appl. Sci.
2009, 3, 607−616.
(14) Barrero, A. F.; Oltra, J. E.; Herrador, M. M.; Cabrera, E.;
Sanchez, J. F.; Quilez, J. F.; Rojas, F. J.; Reyes, J. F. Tetrahedron 1993,
49, 141−150.
(15) Kusumi, T.; Fujita, Y.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett.
1991, 32, 2923−2926.
(16) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591−596.
(17) Marcuccio, S. M.; Elix, J. A. Aust. J. Chem. 1985, 38, 1785−1796.
(18) Sterns, M.; Patrick, J. M.; Patrick, V. A.; White, A. H. Aust. J.
Chem. 1989, 42, 349−364.
(19) Shin, C.; Kato, H.; Yonezawa, Y.; Hayakawa, M. Heterocycles
1980, 14, 1767−1770.
(20) Bryans, J.; Charlton, P.; Chicarelli-Robinson, I.; Collins, M.;
Faint, R.; Latham, C.; Shaw, I.; Trew, S. J. Antibiot. 1996, 49, 1014−
1021.
(21) Zunnundzhanov, A.; Bessonova, I. A.; Abdullaev, N. D.; Ogai,
D. K. Chem. Nat. Compd. 1987, 23, 461−465.
(22) Lin, Z.; Antemano, R. R.; Hughen, R. W.; Tianero, M. D. B.;
Peraud, O.; Haygood, M. G.; Concepcion, G. P.; Olivera, B. M.; Light,
A.; Schmidt, E. W. J. Nat. Prod. 2010, 73, 1922−1926.
(23) Braga, A. L.; Ludtke, D. S.; Sehnem, J. A.; Alberto, E. E.
Tetrahedron 2005, 61, 11664−11671.
(24) Dondoni, A.; Perrone, D.; Turturici, E. J. Org. Chem. 1999, 64,
5557−5564.
(25) Mosmann, T. Immunol. Methods 1983, 65, 55−63.
(26) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.;
Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R; Tan,
N. H.; Zhou, J. J. Natl. Cancer Inst. 1990, 82, 1107−1112.
(27) Zaika, L. L. J. Food Safety 1988, 9, 97−118.
ASSOCIATED CONTENT
■
S
* Supporting Information
Text giving bioassay protocols used and 16S rRNA gene
sequences of Nocardiopsis dassonvillei HR10-5, figures giving
NMR spectra of compounds 1−7 and HPLC profiles of acidic
hydrolysate of 6, and a CIF file giving crystallographic data for
4. This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
*Tel: +86-532-82031268. Fax: +86-532-82031268. E-mail:
2223
dx.doi.org/10.1021/np200597m|J. Nat. Prod. 2011, 74, 2219−2223