Journal of the American Chemical Society
Page 8 of 9
(CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients.
Drug Metab. Dispos. 2000, 28, 423-433.
(29)
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro,
A. L.; Pronzato, M. A.; Marinari, U. M.; Domenicotti, C. Role of glu-
tathione in cancer progression and chemoresistance. Oxid. Med. Cell
Longev. 2013, 2013, 972913.
1
2
3
4
5
6
7
8
(17)
de Man, F. M.; Goey, A. K. L.; van Schaik, R. H. N.;
Mathijssen, R. H. J.; Bins, S. Individualization of Irinotecan Treatment:
A Review of Pharmacokinetics, Pharmacodynamics, and Pharmaco-
genetics. Clin. Pharmacokinet. 2018, 57, 1229-1254.
(30)
Szatrowski, T. P.; Nathan, C. F., Production of large
amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991,
51, 794-798.
(31)
Oxidative stress, inflammation, and cancer: how are they linked? Free
Radic. Biol. Med. 2010, 49, 1603-1616.
(32)
mers for drug delivery: from molecular design to applications. Polym.
Chem.-Uk 2014, 5, 1519-1528.
(33)
(18)
Nakanishi, M.; Rosenberg, D. W. Multifaceted roles of
PGE2 in inflammation and cancer. Semin. Immunopathol. 2013, 35,
123-137.
Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggarwal, B. B.
(19)
Zelenay, S.; van der Veen, A. G.; Bottcher, J. P.; Snelgrove,
K. J.; Rogers, N.; Acton, S. E.; Chakravarty, P.; Girotti, M. R.; Marais,
R.; Quezada, S. A.; Sahai, E.; Sousa, C. R. E. Cyclooxygenase-Depend-
ent Tumor Growth through Evasion of Immunity. Cell 2015, 162,
1257-1270.
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive poly-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Lyu, Y.; Tian, J.; Li, J.; Chen, P.; Pu, K. Semiconducting
(20)
Ogino, S.; Kirkner, G. J.; Nosho, K.; Irahara, N.; Kure, S.;
polymer nanobiocatalysts for photoactivation of intracellular redox re-
actions. Angew. Chem. Int. Ed. 2018, 57, 13484-13488.
Shima, K.; Hazra, A.; Chan, A. T.; Dehari, R.; Giovannucci, E. L.;
Fuchs, C. S. Cyclooxygenase-2 Expression Is an Independent Predictor
of Poor Prognosis in Colon Cancer. Clin. Cancer Res. 2008, 14, 8221-
8227.
(34)
Napoli, A.; Valentini, M.; Tirelli, N.; Muller, M.; Hubbell, J.
A. Oxidation-responsive polymeric vesicles. Nat. Mater. 2004, 3, 183-
189.
(21)
Xu, L.; Stevens, J.; Hilton, M. B.; Seaman, S.; Conrads, T.
(35)
Yang, W.; Gao, X.; Wang, B. Boronic Acids: Biological and
P.; Veenstra, T. D.; Logsdon, D.; Morris, H.; Swing, D. A.; Patel, N.
L.; Kalen, J.; Haines, D. C.; Zudaire, E.; St Croix, B. COX-2 inhibition
potentiates antiangiogenic cancer therapy and prevents metastasis in
preclinical models. Sci. Transl. Med. 2014, 6, 242ra84.
Medical Applications of Boronic Acids; Hall, D. G., Ed.; Wiley-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2005, p 481-512.
(36)
Austin, C. D.; Wen, X.; Gazzard, L.; Nelson, C.; Scheller, R.
H.; Scales, S. J. Oxidizing potential of endosomes and lysosomes limits
intracellular cleavage of disulfide-based antibody-drug conjugates.
Proc. Natl. Acad. Sci. U S A 2005, 102, 17987-17992.
(22)
Kim, H. S.; Sharma, A.; Ren, W. X.; Han, J.; Kim, J. S.
COX-2 Inhibition mediated anti-angiogenic activatable prodrug poten-
tiates cancer therapy in preclinical models. Biomaterials 2018, 185, 63-
72.
(23)
Peng, X. J., An Off-On COX-2-Specific Fluorescent Probe: Targeting
the Golgi Apparatus of Cancer Cells. J. Am. Chem. Soc. 2013, 135,
11663-11669.
(37)
Che, X. H.; Chen, C. L.; Ye, X. L.; Weng, G. B.; Guo, X. Z.;
Yu, W. Y.; Tao, J.; Chen, Y. C.; Chen, X., Dual inhibition of COX-2/5-
LOX blocks colon cancer proliferation, migration and invasion in vitro.
Oncol. Rep. 2016, 35, 1680-1688.
Zhang, H.; Fan, J. L.; Wang, J. Y.; Zhang, S. Z.; Dou, B. R.;
(38)
Liu, Y.; Li, Q.; Zhou, L.; Xie, N.; Nice, E. C.; Zhang, H.;
Huang, C.; Lei, Y., Cancer drug resistance: redox resetting renders a
way. Oncotarget 2016, 7, 42740-42761.
(24)
Zhang, H.; Fan, J.; Wang, J.; Dou, B.; Zhou, F.; Cao, J.; Qu,
J.; Cao, Z.; Zhao, W.; Peng, X., Fluorescence discrimination of cancer
from inflammation by molecular response to COX-2 enzymes. J. Am.
Chem. Soc. 2013, 135, 17469-17475.
(39)
Moldogazieva, N. T.; Lutsenko, S. V.; Terentiev, A. A. Re-
active Oxygen and Nitrogen Species-Induced Protein Modifications:
Implication in Carcinogenesis and Anticancer Therapy. Cancer Res.
2018, 78, 6040-6047.
(25)
Uddin, M. J.; Crews, B. C.; Ghebreselasie, K.; Marnett, L.
J., Design, synthesis, and structure-activity relationship studies of flu-
orescent inhibitors of cycloxygenase-2 as targeted optical imaging
agents. Bioconjug. Chem. 2013, 24, 712-723.
(40)
Cuendet, M.; Mesecar, A. D.; DeWitt, D. L.; Pezzuto, J. M.,
An ELISA method to measure inhibition of the COX enzymes. Nat.
Protoc. 2006, 1, 1915-1921.
(26)
Uddin, M. J.; Crews, B. C.; Ghebreselasie, K.; Daniel, C. K.;
(41)
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune
Kingsley, P. J.; Xu, S.; Marnett, L. J., Targeted imaging of cancer by
fluorocoxib C, a near-infrared cyclooxygenase-2 probe. J. Biomed. Opt.
2015, 20, 50502.
(27)
314-322.
(28)
system in cancer: from tumor initiation to metastatic progression.
Genes Dev. 2018, 32, 1267-1284.
(42)
Ratnam, N. M.; Peterson, J. M.; Talbert, E. E.; Ladner, K. J.;
Visvader, J. E. Cells of origin in cancer. Nature 2011, 469,
Rajasekera, P. V.; Schmidt, C. R.; Dillhoff, M. E.; Swanson, B. J.; Ha-
verick, E.; Kladney, R. D.; Williams, T. M.; Leone, G. W.; Wang, D.
J.; Guttridge, D. C. NF-κB regulates GDF-15 to suppress macrophage
surveillance during early tumor development. J. Clin. Invest. 2017, 127,
3796-3809.
Marusyk, A.; Polyak, K. Tumor heterogeneity: causes and
consequences. Biochim. Biophys. Acta 2010, 1805, 105-117.
ACS Paragon Plus Environment