1766
K. Sachin et al. / Tetrahedron 67 (2011) 1763e1767
þ
ꢂ1
þ
(
100); HRMS (EI) m/z calculated for C14
H17NO
3
(M ) 247.1208,
1616, 1621 cm ; MS (EI) m/z 249 (M ), 234 (100); HRMS (EI) m/z
þ
found 247.1207.
calculated for C14
H16NO
2
F (M ) 249.1165, found 249.1162.
4
.4. General procedure for the synthesis of 15e17
4.5.2. 6-(3-Fluoropropyl)-5,8-dimethoxyquinoline (20). 1
600 MHz, CDCl
H
NMR
(
3
)
d
2.06e2.15 (m, 2H), 2.95 (t, J¼7.9 Hz, 2H), 3.88 (s,
To a solution of 12 (100 mg, 0.40 mmol) and triethylamine
3H), 4.07 (s, 3H), 4.53 (dt, J¼47.4 , 5.8 Hz, 2H), 6.85 (s, 1H), 7.46 (dd,
(
0.12 mL, 0.80 mmol) in methylene chloride (10 mL) was added
J¼12.3 , 4.1 Hz, 1H), 8.36 (dd, J¼10.3 , 1.3 Hz, 1H), 8.89 (dd, J¼10.3,
ꢀ
13
methanesulfonyl chloride (0.05 mL, 0.60 mmol) at 0 C dropwise.
1.3 Hz, 1H); C NMR (150 MHz, CDCl
3
)
d
25.9 (d, J¼4.3 Hz), 31.4 (d,
After 1 h, the reaction mixture was quenched with H
mixture was extracted with CH Cl
(1ꢁ3 mL). The organic layer was
dried overNa SO . After removalof thesolvent, silicagelflash column
2
O. The reaction
J¼20.1 Hz), 56.1, 62.5, 83.4 (d, J¼165.1 Hz), 109.0, 121.7, 124.0, 129.9,
2
2
130.6, 139.8, 146.2, 148.8, 152.1; FT-IR (KBr) 910, 912, 1470, 1504,
ꢂ1
þ
2
4
1619, 1621 cm ; MS (EI) m/z 249 (M ), 234 (100); HRMS (EI) m/z
calculated for C14
þ
chromatography (hexane/EtOAc¼1:4) gave 3-(3-methansulfonylox-
H16NO
2
F (M ) 249.1165, found 249.1162.
ypropyl)-5,8-dimethoxyquinoline (15) (76 mg, 57%) as a white solid;
1
H NMR (600 MHz, CDCl
3
)
d
2.09e2.13 (m, 2H), 2.89 (t, J¼7.5 Hz, 2H),
4.6. General procedure for the synthesis of 21e23
2
.94 (s, 3H), 3.89 (s, 3H), 3.97 (s, 3H), 4.19 (t, J¼5.9 Hz, 2H), 6.69 (d,
13
J¼8.2 Hz,1H), 6.83 (d, J¼8.2 Hz,1H), 8.29 (s,1H), 8.74 (s,1H); C NMR
A solution of 18 (50 mg, 1.6 mmol) in THF (3.0 mL) was added to
a well-stirred mixture of NBS (285 mg,1.6 mmol) in a solution of THF
(
150 MHz, CDCl
3
)
d
29.2, 30.5, 37.5, 55.9, 56.1, 68.8,104.2,106.6,121.5,
ꢀ
129.5,133.0,138.9,148.4,149.3,150.5;FT-IR(KBr)932,979,1480,1543,
2
(5.0 mL), H O (1.0 mL), and sulfuric acid (0.01 mL) at 20 C. The
ꢂ1
þ
1607, 1623 cm ; MS (EI) m/z 325 (M ), 310 (100); HRMS (EI) m/z
mixture was stirred over 15 min and basified with aqueous NaHCO
The mixture was extracted with EtOAc (3ꢁ5 mL). The organic layer
was dried over Na SO . After removal of the solvent, silica gel flash
3
.
þ
calculated for C15
H19NO S (M ) 325.0984, found 325.0982.
5
2
4
4
.4.1. 4-(3-Methansulfonyloxypropyl)-5,8-dimethoxyquinoline
column chromatography (hexane/EtOAc¼1:4) gave 3-(3-fluoro-
1
3
(16). H NMR (600 MHz, CDCl ) d 2.04e2.08 (m, 2H), 2.94 (s, 3H),
propyl)quinoline-5,8-dione (21) (40 mg, 91%) as a tan solid; mp:
ꢀ
1
3
6
8
5
.30 (t, J¼7.5 Hz, 2H), 3.89 (s, 3H), 3.96 (s, 3H), 4.22 (t, J¼6.2 Hz, 2H),
163e165 C; H NMR (600 MHz, CDCl
3
) d 1.99e2.09 (m, 2H), 2.92 (t,
.74 (d, J¼8.2 Hz, 1H), 6.89 (d, J¼8.2 Hz, 1H), 7.13 (d, J¼10.6 Hz, 1H),
J¼7.5 Hz,2H), 4.44(dt, J¼46.7, 6.8 Hz,2H),7.19(s,1H), 7.51(s,1H), 8.17
1
3
13
.71 (d, J¼10.2 Hz, 1H); C NMR (150 MHz, CDCl
3
)
d
31.2, 33.3, 37.4,
(d, J¼2.1 Hz, 1H), 8.25 (d, J¼2.1 Hz, 1H); C NMR (150 MHz, CDCl
29.6 (d, J¼4.3 Hz), 31.3 (d, J¼20.1 Hz), 82.5 (d, J¼166.6 Hz), 128.9,
133.8, 138.0, 139.2, 142.2, 145.8, 155.2, 183.2, 184.9; FT-IR (KBr) 937,
3
)
5.7, 56.2, 69.7, 105.1, 107.0, 120.8, 123.8, 141.6, 147.86, 149.1, 149.9,
d
ꢂ1
150.3; FT-IR (KBr) 928, 980, 1502, 1504, 1594, 1620 cm ; MS (EI)
þ
ꢂ1
þ
m/z 325 (M ), 310 (100); HRMS (EI) m/z calculated for C15
H19NO
5
S
1590, 1687, 1716, 1782 cm ; MS (EI) m/z 219 (M ), 191 (100); HRMS
þ
þ
(
M ) 325.0984, found 325.0982.
(EI) m/z calculated for C12
H
10NO
2
F (M ) 219.0696, found 219.0692.
4
.4.2. 6-(3-Methansulfonyloxypropyl)-5,8-dimethoxyquinoline
4.6.1. 4-(3-Fluoropropyl)quinoline-5,8-dione (22). 1H NMR (600 MHz,
CDCl
1.99e2.09 (m, 2H), 3.25 (t, J¼7.5 Hz, 2H), 4.47 (dt, J¼47.4,
5.8 Hz, 2H), 7.10 (d, J¼10.2 Hz, 1H), 7.40 (d, J¼10.2 Hz, 1H), 7.46 (d,
1
(
17). H NMR (600 MHz, CDCl
J¼7.5 Hz, 2H), 3.02 (s, 3H), 3.87 (s, 3H), 4.07 (s, 3H), 4.29 (t, J¼6.2 Hz,
H), 6.85 (s, 1H), 7.46 (dd, J¼12.3 , 4.1 Hz, 1H), 8.35 (dd, J¼10.3,
3
)
d
2.15e2.19 (m, 2H), 2.95 (t,
3
) d
13
2
J¼4.8 Hz, 1H), 8.83 (d, J¼4.8 Hz, 1H); C NMR (100 MHz, CDCl
30.4 (d, J¼4.1 Hz), 30.6 (d, J¼20.0 Hz), 83.2 (d, J¼165.4 Hz), 127.0,
130.7, 138.7, 141.2, 149.4, 153.6, 154.1, 176.4, 183.9; FT-IR (KBr) 937,
3
)
13
1
d
.3 Hz, 1H), 8.90 (dd, J¼10.3 , 1.3 Hz, 1H); C NMR (150 MHz, CDCl
26.2, 30.1, 37.4, 56.2, 62.5, 69.5, 109.0, 121.7, 124.0, 129.2, 130.6,
39.8, 146.2, 148.9, 152.2; FT-IR (KBr) 928, 978, 1471, 1503, 1594,
3
)
d
ꢂ1
þ
1
1530, 1627, 1716, 1776 cm ; MS (EI) m/z 219 (M ), 198 (100); HRMS
ꢂ1
þ
þ
1620 cm ; MS (EI) m/z 325 (M ), 310 (100); HRMS (EI) m/z cal-
(EI) m/z calculated for C12
H
10NO
2
F (M ) 219.0696, found 219.0697;
þ
ꢀ
culated for C15
H19NO
5
S (M ) 325.0984, found 325.0980.
mp: 180e182 C.
4
.5. General procedure for the synthesis of 18e20
4.6.2. 6-(3-Fluoropropyl)quinoline-5,8-dione (23). 1H NMR (600 MHz,
CDCl
1.90e1.98 (m, 2H), 2.96 (t, J¼7.5 Hz, 2H), 4.47 (dt, J¼47.4,
5.4 Hz, 2H), 7.19 (s, 1H), 7.64 (t, J¼12.4 Hz, 1H), 8.39 (t, J¼9.6 Hz, 1H),
3
) d
A mixture of 15 (40 mg, 0.12 mmol) and tetrabutylammonium
13
fluoride hydrate (TBAF) (64 mg, 0.24 mmol) was dissolved in tert-
amyl alcohol (3 mL) and heated at 80 C for 2 h. The residue was
8.98 (d, J¼4.8 Hz,1H); C NMR (150 MHz, CDCl
3
)
d
25.9 (d, J¼4.2 Hz),
ꢀ
28.8 (d, J¼21.4 Hz), 83.0 (d, J¼166.6 Hz), 109.0, 127.8, 129.3, 134.8,
extracted with EtOAc (3ꢁ5 mL), the organic layer dried over
135.7, 147.6, 154.7, 183.4, 184.6; FT-IR (KBr) 936, 1581, 1676, 1715,
ꢂ1
þ
Na
2
SO
4
, evaporated, and purified by silica gel flash column chro-
1780 cm ; MS (EI) m/z 219 (M ),198 (100); HRMS (EI) m/z calculated
þ
ꢀ
matography (60% hexane/EtOAc¼1:3) to give 3-(3-fluoropropyl)-
for C12H10NO F (M ) 219.0696, found 219.0697; mp: 156e158 C.
2
1
5
,8-dimethoxyquinoline (18) (30 mg, 98%) as a white solid; H NMR
(
600 MHz, CDCl
3
)
d
1.99e2.07 (m, 2H), 2.88 (t, J¼7.92 Hz, 2H), 3.88
4.7. General procedure for the labeling of [18F]21e23
(
1
(
s, 3H), 3.96 (s, 3H), 4.42 (dt, J¼47.4 , 5.8 Hz, 2H), 6.67 (d, J¼8.3 Hz,
1
3
[18F]Fluoride was produced in a cyclotron by the 18O(p,n)18F re-
H), 6.80 (d, J¼8.3 Hz, 1H), 8.29 (s, 1H) 8.74 (s, 1H); C NMR
18
150 MHz, CDCl
3
)
d
28.9 (d, J¼5.7 Hz), 31.9 (d, J¼20.1 Hz), 55.8, 56.1,
action. A volume of 100e200
was added to a vacutainer containing n-Bu
7.7 mol). The azeotropic distillations were conducted with 200
aliquots of CH
displacement reaction of 10 (2.5 mg, 7.7
tert-amyl alcohol (500
m
L of [ F]fluoride (370 MBq) in water
8
2.8 (d, J¼165.2 Hz), 103.9, 106.2, 121.5, 129.5, 133.5, 139.2, 148.4,
4
NHCO (40% aq, 3.7 L,
3
m
ꢂ1
149.6, 150.9; FT-IR (KBr) 914, 915, 1480, 1482, 1500, 1623 cm ; MS
m
mL
þ
ꢀ
18
(
EI) m/z 249 (M ), 234 (100); HRMS (EI) m/z calculated for
3
CN at 75 C under a stream of nitrogen. A [ F]fluoride
þ
18
C
14
H
16NO
2
F (M ) 249.1165, found 249.1162.
m
mol) with n-Bu
4
N [ F]F in
ꢀ
m
L) was carried out in a reaction vial at 100 C
4
(
3
.5.1. 4-(3-Fluoropropyl)-5,8-dimethoxyquinoline (19). 1
600 MHz, CDCl
1.95e2.03 (m, 2H), 3.30 (t, J¼7.5 Hz, 2H), 3.84 (s,
H), 3.96 (s, 3H), 4.43 (dt, J¼47.4 Hz, J¼5.8 Hz, 2H), 6.72 (d,
H
NMR
for 20 min. After cooling to room temperature, a solution of NBS
(5.6 mg, 30.7 mol) in THF (300 L), H O (100 L), and sulfuric acid
(50 L) was added to the reaction mixture directly, and stirred for
5 min at room temperature. After the reaction mixture was basified
with aqueous NaHCO , the solvent was removed with a gentle stream
3
)
d
m
m
2
m
m
J¼8.2 Hz, 1H), 6.87 (d, J¼8.2 Hz, 1H), 7.13 (d, J¼4.1 Hz, 1H) 8.70 (d,
13
J¼9.6 Hz, 1H); C NMR (150 MHz, CDCl
d, J¼18.7 Hz), 55.6, 56.2, 83.6 (d, J¼165.2 Hz), 104.9, 106.7, 121.0,
23.8, 141.8, 148.5, 150.0, 150.4; FT-IR (KBr) 904, 910, 1467, 1570,
3
)
d
32.5 (d, J¼4.3 Hz), 33.0
3
(
1
of nitrogen. The crude compound was injected onto a reversed-phase
HPLC column with 10 mM aqueous phosphoric acid (1 mL) and