Paper
INHIBIT logic gate behavior, Chem. Sulphonic Acids, Esters
RSC Advances
2017, 29, 600–615; (b) A. O. Ortolan, I. Østrøm,
G. F. Caramori, R. L. T. Parreira, E. H. Da Silva and
F. M. Bickelhaupt, Tuning heterocalixarenes to improve
their anion recognition: a computational approach, J. Phys.
Chem. A, 2018, 122, 3328–3336; (c) F. K. W. Hau, H. S. Lo
and V. W. W. Yam, Synthesis and Photophysical Studies of
Their Deriv., 2006, 323–350.
20 S. Sharma, M. Kumari and N. Singh, C3-Symmetrical
Tripodal Acylhydrazone Organogelator for the Selective
Recognition of Cyanide ions in Gel and Solution phase:
Practical Applications in Food Samples, So Matter, 2020,
16, 6532–6538.
Calixarene-Based
Alkynylplatinum(II)
Terpyridine
21 L. Chen, W. Lu, X. Wang and L. Chen, A highly selective and
sensitive colorimetric sensor for iodide detection based on
anti-aggregation of gold nanoparticles, Sens. Actuators, B,
2013, 182, 482–488.
Complexes with Various Receptor Sites for Colorimetric
and Luminescence Sensing of Anions, Chem.–Eur. J., 2016,
22, 3738–3749; (d) C. Parthiban, S. Ciattini, L. Chelazzi and
K. P. Elango, Selective colorimetric sensing of uoride in
an aqueous solution by amino-naphthoquinone and its
Co(II), Ni(II), Cu(II) and Zn(II) complexes – effect of
complex formation on sensing behavior, RSC Adv., 2016, 6,
91265–91274.
´
22 F. Pena-Pereira, N. Capon, I. de la Calle, I. Lavilla and
C. Bendicho, Fluorescent poly(vinylpyrrolidone)-supported
copper nanoclusters in miniaturized analytical systems for
iodine sensing, Sens. Actuators, B, 2019, 299, 126979.
23 M. Singh, N. Singh, J. R. Ascenso and P. M. Marcos, A 28 H. M. Chawla, S. N. Sahu and R. Shrivastava, Synthesis and
Dihomooxacalix[4]arene-gold
colorimetric sensor for sensitive and selective detection of
iodide, Supramol. Chem., 2019, 31, 313–321.
nanohybrid
based
binding characteristics of novel calix [4] arene
(amidocrown) diquinones, Can. J. Chem., 2009, 87, 523–531.
29 (a) S. B. Nimse and T. Kim, Biological applications of
functionalized calixarenes, Chem. Soc. Rev., 2013, 42, 366–
386; (b) C. Chen, X. Ni, H. W. Tian, Q. Liu, D. S. Guo and
D. Ding, Calixarene-Based Supramolecular AIE Dots with
Highly Inhibited Nonradiative Decay and Intersystem
Crossing for Ultrasensitive Fluorescence Image-Guided
Cancer Surgery, Angew. Chem., Int. Ed., 2020, 59, 10008–
10012; (c) D. Xia, P. Wang, X. Ji, N. M. Khashab,
J. L. Sessler and F. Huang, Functional Supramolecular
Polymeric Networks: The Marriage of Covalent Polymers
and Macrocycle-Based HostꢀGuest Interactions, Chem.
Rev., 2020, 120, 6070–6123.
24 H. F. Xie, C. Wu, J. Zou, Y. X. Yang, H. Xu, Q. L. Zhang,
C. Redshaw and T. Yamato, A pyrenyl-appended C3v-
symmetric hexahomotrioxacalix[3]arene for selective
uorescence sensing of iodide, Dyes Pigm., 2020, 178,
108340.
25 P. R. Sharma, V. K. Soni, S. Pandey, G. Choudhary,
A. K. Plappally and R. K. Sharma, Dipicrylhydrazine: A
versatile visual anions sensor, J. Environ. Chem. Eng., 2017,
5, 2232–2239.
26 (a) H. M. Chawla, S. P. Singh and S. Upreti, Synthesis of calix
[4]arene(amido)monocrowns and their photoresponsive
derivatives, Tetrahedron, 2006, 62, 9758–9768; (b) 30 G. Yu, K. Jie and F. Huang, Supramolecular Amphiphiles
V. Saravanan, A. Kannan and P. Rajakumar, p-tert-
Butylcalix[4]arene core based ferrocenyl dendrimers: Novel
Based on HostꢀGuest Molecular Recognition Motifs,
Chem. Rev., 2015, 115, 7240–7303.
sensor for toxic Hg2+ ion even in presence of Zn2+, Cu2+ 31 S. Patra, D. Maity, R. Gunupuru, P. Agnihotri and P. Paul,
and Ag+ ions, Sens. Actuators, B, 2017, 242, 904–911; (c)
J. Xu, Y. Yang, H. Baigude and H. Zhao, New ferrocene–
Calixarenes: Versatile molecules as molecular sensors for
ion recognition study, J. Chem. Sci., 2012, 124, 1287–1299.
triazole derivatives for multi signaling detection of Cu2+ in 32 C. D. Gutsche and M. Iqbal, p-tert-butylcalix[4]arene, Org.
aqueous medium and their antibacterial activity,
Synth., 1993, VIII, 75–76.
Spectrochim. Acta, Part A, 2020, 229, 117880; (d) 33 C. D. Gutsche, J. A. Levine and P. K. Sujeeth, Calixarenes. 17.
M. Ramachandran, S. Anandan and M. Ashok kumar, A
Functionalized Calixarenes: The Claisen Rearrangement
luminescent on–off probe based calix[4]arene linked
Route, J. Org. Chem., 1985, 50, 5802–5806.
through
triazole
with
ruthenium(II)
polypyridine 34 F. Unob, Z. Asfari and J. Vicens, An Anthracene-Based
complexes to sense copper(II) and sulde ions, New J.
Chem., 2019, 43, 9832–9842; (e) B. Mohan and
Fluorescent Sensor for Transition Metal Ions Derived From
Calix[4]arene, Tetrahedron Lett., 1998, 39, 2951–2954.
H. K. Sharma, Synthesis of calix[6]arene and transduction 35 M. Bayrakcl and S. Yigiter, Synthesis of tetra-substituted
of its furfural derivative as sensor for Hg(II) ions, Inorg.
Chim. Acta, 2019, 486, 63–68; (f) Y. Z. Chen, D. Pan,
B. Chen, G. X. Wang, C. H. Tung and L. Z. Wu, Synthesis,
calix[4]arene ionophores and the irrecognition studies
toward toxic arsenate anions, Tetrahedron, 2013, 69, 3218–
3224.
Characterization, and Selective Sr2+ Sensing Study of 36 Z. Q. Shi, Y. Q. Feng, N. Song and H. W. Wang, Novel
Copper(I)-Bridged
Alkynylplatinum(II) Complexes, Eur. J. Inorg. Chem., 2017,
44, 5108–5113.
Calix[4]arene-Based
Binuclear
Synthesis and Characterization of N-Substituted-calix[4]
azacrown Derivatives, Synth. Commun., 2008, 38, 983–990.
37 G. M. Sheldrick, Saint, 5.1 edn, Siemens Industrial
Automation Inc., Madison, WI, 1995.
27 (a) D. Maity, M. Bhatt, M. L. Desai, E. Suresh, M. K. Si,
V. P. Boricha, B. Ganguly and P. Paul, Effect of 38 SADABS, Empirical Absorption Correction Program, University
¨ ¨
of Gottingen, Gottingen, 1997.
conformation, exibility and intramolecular interaction on
ion selectivity of calix[4]arene-based anion sensors: 39 G. M. Sheldrick, SHELXTL Reference Manual: Version 5.1,
experimental and computational studies, Supramol. Chem.,
Bruker AXS, Madison, WI, 1997.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 26644–26654 | 26653