Full Paper
[3] B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky,
O. M. Yaghi, S. Dai, Angew. Chem. Int. Ed. 2006, 45, 1390–1393.
[4] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem.
Soc. Rev. 2009, 38, 1450–1459.
with a TRIAX 320 emission monochromator (Fluorolog-3, Horiba Sci-
entific) coupled to a R928 Hamamatsu photomultiplier, for the de-
tection on the visible spectral range, using the front face acquisition
mode. The excitation source was a 450 W Xe arc lamp. The emission
spectra were corrected for detection and optical spectral response
of the spectrofluorometer and the excitation spectra were corrected
for the spectral distribution of the lamp intensity using a photodi-
ode reference detector. Time-resolved measurements were carried
out with the pulsed Xe-Hg lamp excitation, in front face acquisition
mode. The temperature was controlled by a helium-closed cycle
cryostat with vacuum system measuring ca. 5 × 10–6 mbar and a
Lakeshore 330 auto-tuning temperature controller with a resistance
heater. The temperature can be adjusted from ca. 12 to 450 K with
a maximum accuracy of 0.1 K. The sample temperature was fixed
at a given value using the auto-tuning temperature controller; after
waiting a minimum of 5 minutes to thermalize the sample, four
consecutive steady-state emission spectra were measured for each
temperature; the maximum temperature difference detected during
the acquisitions was 0.1 K, the temperature accuracy of the control-
ler.
[5] T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982–5993.
[6] C. Wang, T. Zhang, W. Lin, Chem. Rev. 2012, 112, 1084–1104.
[7] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey,
R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232–1268.
[8] a) R. M. Abdelhameed, D. Ananias, A. Silva, J. Rocha, ChemistrySelect
2017, 2, 136–139; b) R. M. Abdelhameed, L. D. Carlos, P. Rabu, S. M.
Santos, A. Silva, J. Rocha, Eur. J. Inorg. Chem. 2014, 2014, 5285–5295; c)
R. M. Abdelhameed, L. D. Carlos, A. M. Silva, J. Rocha, Chem. Commun.
2013, 49, 5019–5021; d) R. M. Abdelhameed, L. D. Carlos, A. M. Silva, J.
Rocha, New J. Chem. 2015, 39, 4249–4258.
[9] a) J.-N. Hao, B. Yan, J. Mater. Chem. A 2014, 2, 18018–18025; b) Y. Zhou,
H.-H. Chen, B. Yan, J. Mater. Chem. A 2014, 2, 13691–13697.
[10] C. Volkringer, M. Meddouri, T. Loiseau, N. Guillou, J. Marrot, G. Ferey, M.
Haouas, F. Taulelle, N. Audebrand, M. Latroche, Inorg. Chem. 2008, 47,
11892–11901.
[11] L. Wu, M. Xue, S.-L. Qiu, G. Chaplais, A. Simon-Masseron, J. Patarin, Micro-
porous Mesoporous Mater. 2012, 157, 75–81.
[12] C. Yang, S. Wu, J. Cheng, Y. Chen, J. Alloys Compd. 2016, 687, 804–812.
[13] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, Appl. Catal. B 2015,
162, 245–251.
[14] A. Millán, L. D. Carlos, C. D. S. Brites, N. J. O. Silva, R. Piñol, F. Palacio, in
Thermometry at the Nanoscale: Techniques and Selected Applications (Eds.:
L. D. Carlos and F. Palacio), RSC Nanoscience and Nanotechnology, 2016,
pp. 237-272.
[15] J. Rocha, C. D. Brites, L. D. Carlos, Chem. Eur. J. 2016, 22, 14782–14795.
[16] D. Ananias, F. A. A. Paz, D. S. Yufit, L. D. Carlos, J. O. Rocha, J. Am. Chem.
Soc. 2015, 137, 3051–3058.
Acknowledgments
Thanks are due to University of Aveiro and FCT/MEC for the
financial support to the QOPNA research project (FCT UID/QUI/
00062/2019) and to the CICECO-Aveiro Institute of Materials
(POCI-01-0145-FEDER-007679; FCT UID/CTM/50011/2019), fi-
nanced by national funds and when appropriate co-financed
by FEDER under the PT2020 Partnership Agreement, and to the
Portuguese NMR Network. We further wish to thank STDF
(project number 25313) for the grant given to R. M. Abdelham-
eed.
[17] C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, L. D.
Carlos, Nanoscale 2012, 4, 4799–4829.
[18] a) X. Liu, S. Akerboom, M. d. Jong, I. Mutikainen, S. Tanase, A. Meijerink,
E. Bouwman, Inorg. Chem. 2015, 54, 11323–11329; b) R. F. D′Vries, S.
Álvarez-García, N. Snejko, L. E. Bausá, E. Gutiérrez-Puebla, A. de Andrés,
M. Á. Monge, J. Mater. Chem. C 2013, 1, 6316–6324; c) Z. Wang, D. Ana-
nias, A. Carné-Sánchez, C. D. Brites, I. Imaz, D. Maspoch, J. Rocha, L. D.
Carlos, Adv. Funct. Mater. 2015, 25, 2824–2830; d) M. Ren, C. D. Brites, S.-
S. Bao, R. A. Ferreira, L.-M. Zheng, L. D. Carlos, J. Mater. Chem. C 2015, 3,
8480–8484; e) D. Ananias, C. D. Brites, L. D. Carlos, J. Rocha, Eur. J. Inorg.
Chem. 2016, 2016, 1967–1971; f) I. N′Dala-Louika, D. Ananias, C. Lat-
ouche, R. Dessapt, L. D. Carlos, H. Serier-Brault, J. Mater. Chem. C 2017,
5, 10933–10937; g) D. Ananias, F. A. Almeida Paz, L. D. Carlos, J. Rocha,
Chem. Eur. J. 2018, 24, 11926–11935.ORCID MISSINGDuarte Ananias
Keywords: Metal-organic frameworks · Lanthanides · Post-
synthetic modification · Luminescent thermometry
[1] S. L. James, Chem. Soc. Rev. 2003, 32, 276–288.
[2] O. K. Farha, A. Ö. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G.
Kanatzidis, S. T. Nguyen, R. Q. Snurr, J. T. Hupp, Nat. Chem. 2010, 2, 944-
948.
Received: January 28, 2019
Eur. J. Inorg. Chem. 0000, 0–0
6
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim