Structure of ␥-Glutamylamine Cyclotransferase
␥-glutamylcyclotransferase activity, as the BtrG protein from
B. circulans catalyzes the formation of 5-oxoproline from an
intermediate in the synthesis of the antibiotic butirosin (20).
Thus, although the primary amino acid sequences of this struc-
tural family are incredibly diverse, the conserved fold is very
strongly associated with conserved ␥-glutamylcyclotransferase
activity. Because there is such great sequence diversity between
the three groups within this structural family, there is a strong
possibility that additional subfamilies with sequence diversity
beyond the reach of BLAST alignments may be identified by
structural studies in the future.
Acknowledgments—We thank the technical staff of the Bio21-C3 Cen-
ter for help with crystallization. This work was undertaken on the
PX-1 and PX-2 beamlines at the Australian Synchrotron (Victoria,
Australia).
REFERENCES
1. Pisano, J. J., Finlayson, J. S., and Peyton, M. P. (1968) Science 160, 892–893
2. Fink, M. L., Chung, S. I., and Folk, J. E. (1980) Proc. Natl. Acad. Sci. U.S.A.
77, 4564–4568
3. Fink, M. L., and Folk, J. E. (1981) Mol. Cell. Biochem. 38, 59–67
4. Oakley, A. J., Yamada, T., Liu, D., Coggan, M., Clark, A. G., and Board,
P. G. (2008) J. Biol. Chem. 283, 22031–22042
5. Orlowski, M., Richman, P. G., and Meister, A. (1969) Biochemistry 8,
1048–1055
6. Orlowski, M., and Meister, A. (1973) J. Biol. Chem. 248, 2836–2844
7. Klock, H. E., Schwarzenbacher, R., Xu, Q., McMullan, D., Abdubek, P.,
Ambing, E., Axelrod, H., Biorac, T., Canaves, J. M., Chiu, H. J., Deacon,
A. M., DiDonato, M., Elsliger, M. A., Godzik, A., Grittini, C., Grzechnik,
S. K., Hale, J., Hampton, E., Han, G. W., Haugen, J., Hornsby, M., Jarosze-
wski, L., Koesema, E., Kreusch, A., Kuhn, P., Miller, M. D., Moy, K.,
Nigoghossian, E., Paulsen, J., Quijano, K., Reyes, R., Rife, C., Sims, E.,
Spraggon, G., Stevens, R. C., van den Bedem, H., Velasquez, J., Vincent, J.,
White, A., Wolf, G., Hodgson, K. O., Wooley, J., Lesley, S. A., and Wilson,
I. A. (2005) Proteins 61, 1132–1136
FIGURE 7. Surface of GGACT (A) and GGCT (B) with substrate modeled in
the active site. Electrostatic potential at the surface is represented as blue
(positive potential) and red (negative potential).
(E201Q) inactivates the enzyme. Papaya QC, representative of
the second group, adopts a five-blade -propeller (23).
Although this enzyme binds a Zn2ϩ ion, this does not appear to
be involved in catalysis. Nevertheless, the proposed mechanism
for papaya QC involves the use of an acid/base residue (Glu69)
in an analogous fashion to Glu82 in GGACT, Glu98 in GGCT,
and Glu201 in human QC. In the proposed mechanism, papaya
QC stabilizes the oxyanion using the side chain amino group of
Lys225. Taken together, the structural and functional data for
QC, GGACT, and GGCT enzymes suggest convergent evolu-
tion in the catalytic mechanism.
8. Catanzariti, A. M., Soboleva, T. A., Jans, D. A., Board, P. G., and Baker,
R. T. (2004) Protein Sci. 13, 1331–1339
9. Board, P. G., Moore, K. A., and Smith, J. E. (1978) Biochem. J. 173,
427–431
10. Board, P. G., Smith, J. E., and Moore, K. (1978) J. Lab. Clin. Med. 91,
127–131
11. McPhillips, T. M., McPhillips, S. E., Chiu, H. J., Cohen, A. E., Deacon,
A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley,
R. P., Soltis, S. M., and Kuhn, P. (2002) J. Synchrotron Radiat. 9, 401–406
12. Leslie, A. G. (2006) Acta Crystallogr. D Biol. Crystallogr. 62, 48–57
13. Evans, P. (2006) Acta Crystallogr. D Biol. Crystallogr. 62, 72–82
14. Lebedev, A. A., Vagin, A. A., and Murshudov, G. N. (2008) Acta Crystal-
logr. D Biol. Crystallogr. 64, 33–39
The wide distribution of proteins adopting the cyclotrans-
ferase fold across Eukarya, Archaea, and Bacteria may indicate
an ancient evolutionary origin of the cyclotransferase fold. The
structural features most strongly conserved are the -barrel
and helix ␣1 (GGACT numbering). The STAMP alignment
also shows key conserved sequence motifs. Despite the lack of
significant sequence identity between GGCT and GGACT, the
conservation of topology (including the unusual -strand
crossover described above) and active-site residues leads us to
propose that these enzymes are derived from a common ances-
tral gene and functionally specialized after a gene duplication
event, with GGACT optimized for catalysis on substrates with a
␥-L-glutamyl moiety linked to extended alkylamines and GGCT
optimized for catalysis on substrates with a L-␥-glutamyl moi-
ety linked to L-␣-amino acids. There is recent evidence that
some prokaryotic members of this structural family also have
15. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Acta Crystallogr.
D Biol. Crystallogr. 53, 240–255
16. Emsley, P., and Cowtan, K. (2004) Acta Crystallogr. D Biol. Crystallogr. 60,
2126–2132
17. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M.
(1993) J. Appl. Crystallogr. 26, 283–291
18. Russell, R. B., and Barton, G. J. (1992) Proteins 14, 309–323
19. Papadopoulos, J. S., and Agarwala, R. (2007) Bioinformatics 23, 1073–1079
20. Llewellyn, N. M., Li, Y., and Spencer, J. B. (2007) Chem. Biol. 14, 379–386
21. Steinkamp, R., Schweinhofen, B., and Rennenberg, H. (1987) Physiol.
Plant. 69, 499–503
22. Huang, K. F., Liu, Y. L., Cheng, W. J., Ko, T. P., and Wang, A. H. J. (2005)
Proc. Natl. Acad. Sci. U.S.A. 102, 13117–13122
23. Wintjens, R., Belrhali, H., Clantin, B., Azarkan, M., Bompard, C., Baeyens-
Volant, D., Looze, Y., and Villeret, V. (2006) J. Mol. Biol. 357, 457–470
9648 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 13•MARCH 26, 2010