10.1002/anie.202014308
Angewandte Chemie International Edition
COMMUNICATION
J. Am. Chem. Soc. 2017, 139, 14392–14395; f) R. Guo, B. P.
Witherspoon, M. K. Brown. J. Am. Chem. Soc. 2020, 142, 5002−5006.
[24] a) S. L. Drew, A. L. Lawrence, M. S. Sherburn, Angew. Chem. 2013, 125,
4315–4318; Angew. Chem. Int. Ed. 2013, 52, 4221–4224; b) P. Sharma,
D. J. Ritson, J. Burnley, J. E. Moses, Chem. Commun. 2011, 47, 10605–
10607; c) J. C. Moore, E. S. Davies, D. A. Walsh, P. Sharma, J. E. Moses,
Chem. Commun. 2014, 50, 12523–12525; d) H. N. Lim, K. A. Parker,
Org. Lett. 2013, 15, 398–401; e) H. N. Lim, K. A. Parker, J. Org. Chem.
2014, 79, 919–926; f) S. L. Drew, A. L. Lawrence, M. S. Sherburn, Chem.
Sci. 2015, 6, 3886–3890.
[8]
For selected reviews, see: a) K. C. Nicolaou, S. A. Snyder, T. Montagnon,
G. Vassilikogiannakis, Angew. Chem. 2002, 114, 1742−1773; Angew.
Chem. Int. Ed. 2002, 41, 1668−1698; b) J.-A. Funel, S. Abele, Angew.
Chem. 2013, 125, 3912−3955; Angew. Chem. Int. Ed. 2013, 52,
3822−3863; c) B. Yang, S. Gao, Chem. Soc. Rev. 2018, 47, 7926−7953;
d) X. Jiang, R. Wang, Chem. Rev. 2013, 113, 5515–5546; e) B. L.
Oliveira, Z. Guo, G. J. L. Bernardes, Chem. Soc. Rev. 2017, 46, 4895–
4950.
[25] For seminal work on electrocyclization in total synthesis, see: a) K. C.
Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am. Chem. Soc. 1982,
104, 5555–5557; b) K. C. Nicolaou, N. A. Petasis, J. Uenishi, R. E. Zipkin,
J. Am. Chem. Soc. 1982, 104, 5557–5558; c) K. C. Nicolaou, R. E. Zipkin,
N. A. Petasis, J. Am. Chem. Soc. 1982, 104, 5558–5560; d) K. C.
Nicolaou, N. A. Petasis, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104,
5560–5562.
[9]
X. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2010, 132, 11004–11005.
[10] a) A. G. Ross, S. D. Townsend, S. J. Danishefsky, J. Org. Chem. 2013,
78, 204–210; b) A. G. Ross, X. Li, S. J. Danishefsky, J. Am. Chem. Soc.
2012, 134, 16080–16084.
[11] a) A. Lumbroso, S. Catak, S. Sulzer-Mosse, A. D. Mesmaeker,
Tetrahedron Lett. 2014, 55, 6721–6725; b) A. Lumbroso, S. Catak, S.
Sulzer-Mosse, A. D. Mesmaeker, Tetrahedron Lett. 2014, 55, 5147–
5150; c) B. Bienfait, G. Coppe-Motte, R. Merènyi, H. G. Viehe, W. Sicking,
R. Sustmann, Tetrahedron 1991, 47, 8167–8176; d) T. R. Kelly, R. W.
McNutt, Tetrahedron Lett. 1975, 16, 285–288.
[26] Y. Morita, M. Suzuki, R. Noyori, J. Org. Chem.1989, 54, 1785−1787.
[27] See SI for NOESY spectra of compounds 20 and 22.
[28] a) M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune,
W. R. Roush, T. Sakai, Tetrahedron Lett. 1984, 25, 2183−2186; b) M. W.
Rathke, M. Nowak, J. Org. Chem. 1985, 50, 2624−2626.
[12] Reviews: a) E. J. Corey, Angew. Chem. 2009, 121, 2134–2151; Angew.
Chem. Int. Ed. 2009, 48, 2100–2117; b) S. Y. Shim, D. H. Ryu, Acc.
Chem. Res. 2019, 52, 2349–2360; c) D. P. Schwinger, T. Bach, Acc.
Chem. Res. 2020, 53, 1933–1943.
[29] C. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916–
2927.
[13] For selected recent applications in cyclobutane formation, see: a) J. M.
Wiest, M. L. Conner, M. K. Brown, J. Am. Chem. Soc. 2018, 140, 15943–
15949; b) J. M. Wiest, M. L. Conner, M. K. Brown, Angew. Chem. 2018,
130, 4737–4741; Angew. Chem. Int. Ed. 2018, 57, 4647–4651; c) H. Guo,
E. Herdtweck, T. Bach, Angew. Chem. 2010, 122, 7948–7951; Angew.
Chem. Int. Ed. 2010, 49, 7782–7785; d) R. Brimioulle, T. Bach, Science
2013, 342, 840–843; e) S. Y. Shim, Y. Choi, D. H. Ryu, J. Am. Chem.
Soc. 2018, 140, 11184–11188; f) L. Zeng, J. Xu, D. Zhang, Z. Yan, G.
Cheng, W. Rao, L. Gao, Angew. Chem. 2020, 10.1002/ange.202008465;
Angew. Chem. Int. Ed. 2020, 10.1002/anie.202008465.
[14] a) D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626–
9627; b) M. Hatano, Y. Goto; A. Izumiseki, M. Akakura, K. Ishihara, J.
Am. Chem. Soc. 2015, 137, 13472–13475.
[15] a) X. Liu, H. Zheng, Y. Xia, L. Lin, X. Feng, Acc. Chem. Res. 2017, 50,
2621–2631; b) H. Zheng, Y. Wang, C. Xu, Q. Xiong, L. Lin, X. Feng,
Angew. Chem. 2019, 131, 5381–5385; Angew. Chem. Int. Ed. 2019, 58,
5327–5331.
[16] K. Narasaka, N. Iwasawa, M. Inoue, T. Yamada, M. Nakashima, J.
Sugimori, J. Am. Chem. Soc. 1989, 111, 5340–5345.
[17] a) D. H. Ryu, T. W. Lee, E. J. Corey, J. Am. Chem. Soc. 2002, 124,
9992−9993; b) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2003, 125,
6388–6390; c) D. Liu, E. Canales, E. J. Corey, J. Am. Chem. Soc. 2007,
129, 1498−1499; d) K. M. Reddy, E. Bhimireddy, B. Thirupathi, S. Breitler,
S. Yu, E. J. Corey, J. Am. Chem. Soc. 2016, 138, 2443−2453; e) B.
Thirupathi, S. Breitler, K. M. Reddy, E. J. Corey, J. Am. Chem. Soc. 2016,
138, 10842−10845.
[18] a) K. Shibatomi, K. Futatsugi, F. Kobayashi, S. Iwasa, H. Yamamoto, J.
Am. Chem. Soc. 2010, 132, 5625–5627; b) J. N. Payette, H. Yamamoto,
J. Am. Chem. Soc. 2007, 129, 9536–9537.
[19] CCDC 2036225 (rac-4), 2036227 (6c), 2036228 (8a) and 2036226 (ent-
8h’) contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
[20] E. N. Hancock, J. M. Wiest, M. K. Brown, Nat. Prod. Rep. 2019, 36,
1383–1393.
[21] We thank reviewer’s suggestion on the role of 3-substitution for the
stability of cyclobutane 2. See SI for further discussions on reactivity of
cyclobutenones.
[22] F. Mahuteau-Betzer, L. Ghosez, Tetrahedron 2002, 58, 6991–7000.
[23] C. Zheng, G.-Z. Wang, R. Shang, Adv. Synth. Catal. 2019, 361,
4500−4505.
This article is protected by copyright. All rights reserved.