C O M M U N I C A T I O N S
Table 1. Allylic Alkylation of 1,3-Diphenylallyl Acetate and
Dimethyl Malonate at T ) 25 °C Using Different Palladium
Catalyst Assemblies: Enantiomeric Excesses Are Givena
diversity of the relatively small supramolecular catalyst library is
already sufficient to give catalysts with selectivities ranging from
70% (S) to 60% (R), and, unexpectedly, monomer ligand 3 resulted
even in 97% ee.
ligand
1
2
3
4
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
85 (S)
0
47 (R)
0
40 (S)
23 (S)
4 (S)
45 (S)
42 (R)
11 (S)
86 (R)
0
47 (S)
0
38 (R)
23 (R)
3 (R)
45 (R)
43 (S)
10 (R)
20 (S)
0
59 (S)
0
11 (R)
10 (S)
22 (R)
37 (S)
43 (S)
27 (S)
48 (R)
0
17 (R)
0
33 (S)
5 (S)
0
40 (S)
39 (R)
28 (S)
In conclusion, a new strategy for the preparation of chelating
bidentate ligands is presented. It involves mixing of two mono-
dentate ligands functionalized with complementary binding sites.
In the current example, the assembly process is based on selective
metal-ligand interactions, using phosphite zinc(II) porphyrins 1-6
and the nitrogen donor ligands b-i. From only 16 monodentate
ligands, a library of 60 palladium catalysts based on 48 bidentate
ligand assemblies has been prepared. The relatively small catalyst
library gave a large variety in the selectivity of the alkylation of
rac-1,3-diphenyl-2-propenyl acetate. So far, we only used phosphite
zinc(II) porphyrin 1-6 and monodentate ligands a-i, but many
other (a)chiral building blocks can be used for the ligand assemblies
including those based on hydrogen bonds.15
a
b
c
d
e
f
g
h
i
40 (S)
40 (R)
28 (S)
36 (S)
34 (R)
28 (S)
a [[Pd(allyl)Cl]2] ) 0.1 mmol/L, [1-6] ) 0.6 mmol/L, [a-i] ) 0.6 mmol/
L, the reaction was stopped after 24 h, T ) 25 °C, complete conversion
was obtained in all cases.
Table 2. Allylic Alkylation of 1,3-Diphenylallyl Acetate at T ) -20
°C Using Different Palladium Catalyst Assembliesa
ligand
conv. (%)
eeb (%)
ligand
conv. (%)
eeb (%)
Acknowledgment. The NRSCC is kindly acknowledged for
financial support of this project.
3
56
100
100
100
97 (S)
60 (R)
0
4
54
100
73
96 (R)
60 (S)
42 (S)
70 (S)
3‚b
3‚c
3‚d
4‚b
Supporting Information Available: Experimental details and
characterization data for all new compounds (PDF). This material is
5
44 (S)
5‚b
40
a See Table 1 for conditions. b ee ) enantiomeric excess.
References
Upon using (S)-ortho 3 as a monodentate ligand, we observed
an unexpected high ee (85%, S), because only a few monodentate
ligands are known to give high ee for this reaction.2c The (S)-meta
5 resulted in a much lower selectivity (20% ee, S). Interestingly,
bidentate ligand assembly 3‚b gave the enantiomeric product (47%
ee, R) opposite to that of monodentate 3, probably because in this
system the attack of the nucleophile is trans to the phosphine
ligand,12,13 while bidentate ligand assembly 5‚b gave a higher ee
of the same product as 5 (59% ee, S). Another remarkable result is
that obtained with bulky phosphite 6, which preferentially gives
an enantiomeric product other than 3 (48% ee, R). However, in the
presence of co-ligand (b, d, e, f, g, h) forming a chelating bidentate,
it does give the same enantiomer as do the analogue assemblies
based on 3. As expected, optically inactive 1 and 2 gave ee (up to
40%) only in combination with chiral building blocks g-i. It is
interesting to note that all reactions in the presence of triphenyl-
phospine (a) gave no ee, indicating that the catalysis is dominated
by palladium triphenylphosphine species. This clearly shows the
importance of the chelate effect induced by the binding motif.
From the initial screening experiments, some “hits” were ident-
ified, and these catalyst systems were subsequently studied at -20
°C. Under these conditions, the palladium catalyst based on 3 gave
a very high enantioselectivity (97% (S)) (Table 2). The catalyst
based on ligand assembly 3‚b gave under these conditions an
enantiomeric excess of 60% (R).14 The assembly 3‚b proved to be
more active than the catalyst based on 3, because the yield after
24 h was 100% as compared to 56%. The catalyst based on the
bidentate assembly 3‚d resulted in the formation of the S-product
with an enantiomeric excess of 44%. Similar to that previously
found for covalently linked phosphine-phosphite ligands,13 a small
difference in the length of the bridge between the phosphine and
phosphite resulted in a large difference in enantioselectivity (3‚b
60% (R) and 3‚d 44% (S)). At -20 °C, ligand 5 resulted in a catalyst
that produces 42% ee (S), whereas the bidentate assembly 5‚b
resulted in 70% ee (S). In this case, the assembly 5‚b gave a slightly
slower catalyst (40% yield as compared to 73% for 5). Importantly,
small changes in the assembly of the phosphite zinc(II) porphyrin
and the phosphorus ligands a-i have a large influence on the
enantioselectivity as well as the activity of the catalyst system. The
(1) (a) Chaloner, P. A.; Esteruelas, M. A.; Joo’, F.; Oro, L. A. Homogeneous
Hydrogenation; Kluwer: Dordrecht, 1994. (b) Brown, J. M. In Compre-
hensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto,
H., Eds.; Springer: Berlin, 1999; Vol. 1, Chapter 5.1. (c) Parshall, G.
W.; Ittel, S. D. Homogeneous Catalysis; Wiley: New York, 1992. (d)
van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P.
Chem. ReV. 2000, 100, 2741.
(2) (a) Komarov, I. V.; Borner, A. Angew. Chem., Int. Ed. 2001, 40, 1197.
(b) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de
Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000,
122, 11539. (c) Hayashi T. Acc. Chem. Res. 2000, 33, 354.
(3) Hu, J.-B.; Zhao, G.; Ding, Z.-D. Angew. Chem., Int. Ed. 2001, 40, 1109.
(4) (a) Stambuli, J. P.; Stauffer, S. R.; Shaughnessy, K. H.; Hartwig, J. F. J.
Am. Chem. Soc. 2001, 123, 2677. (b) Harris, R. F.; Natio, A. A. J.;
Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2000, 122, 11270. (c)
Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am. Chem. Soc. 1999,
121, 2123. (d) Yue, T.-Y.; Nugent, W. A. J. Am. Chem. Soc. 2002, 124,
13692. (e) Reetz, M. T.; Kuhling, K. M.; Deege, A.; Hinrichs, H.; Belder,
D. Angew. Chem., Int. Ed. 2000, 39, 3891. (f) Reetz, M. T. Angew. Chem.,
Int. Ed. 2002, 41, 1335. (g) Vries, de J. G.; Vries, de A. H. M. Eur. J.
Org. Chem. 2003, 799. (h) Stauffer, S. R.; Hartwig, J. F. J. Am. Chem.
Soc. 2003, 125, 6977.
(5) (a) Reetz, M. T.; Sell, T.; Meiswinkel, A.; Mehler, G. Angew. Chem.,
Int. Ed. 2003, 42, 790. (b) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40,
284. (c) Reetz, M. T. Angew. Chem., Int. Ed. 2002, 41, 1335. (d) Taylor,
S. J.; Morken, J. P. Science 1998, 280, 267. (e) Francis, M. B.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 1999, 38, 937 (f) Crabtree, R. H. Chem.
Commun. 1999, 1611. (g) Francis, M. B.; Jamison, T. F.; Jacobsen, E. N.
Curr. Opin. Chem. Biol. 1998, 2, 422.
(6) (a) Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M. Angew. Chem., Int. Ed. 2001, 40, 4271. (b) Slagt, V. F.; van Leeuwen,
P. W. N. M.; Reek, J. N. H. Angew. Chem., Int. Ed. 2003, 42, 5619. (c)
Slagt, V. F.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun.
2003, 2474. (d) Slagt, V. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.;
Reek, J. N. H. J. Am. Chem. Soc. 2004, 126, 1526.
(7) Phosphorus donor atoms do not coordinate to the zinc(II) porphyrin.
(8) Bidentate ligand assembly 2‚b gave similar results.
(9) In this competition experiment, the chelate effect appears as an increase
in the binding constant in the presence of the rhodium complex; see
Supporting Information.
(10) Rhodium-catalyzed Hydroformylation; van Leeuwen, P. W. N. M., Claver,
C., Eds.; Kluwer Academic Publishers: Dordrecht, 2000.
(11) (a) Tsuji, J. Tetrahedron 1986, 42, 4361. (b) Trost, B. M.; Van Vranken,
D. L. Chem. ReV. 1996, 96, 395. (c) Helmchen, G.; Pfaltz, A. Acc. Chem.
Res. 2000, 33, 336. (d) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339. (d)
Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921.
(12) Pre´tot, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323.
(13) Deerenberg, S.; Schrekker, H. S.; van Strijdonck, G. P. F.; Kamer, P. C.
J.; van Leeuwen, P. W. N. M.; Fraanje, J.; Goubitz, K. J. Org. Chem.
2000, 65, 4810.
(14) The enantioselectivity did not change in the presence of excess b.
(15) Breit, B.; Seiche, W. J. Am. Chem. Soc. 2003, 125, 6608.
JA038955F
9
J. AM. CHEM. SOC. VOL. 126, NO. 13, 2004 4057