Angewandte Chemie International Edition
10.1002/anie.201804088
COMMUNICATION
Experiment was performed in a homogeneous system by
dissolving 15.5 mM DMMP and 50 mg 2 (5.8 umol) in a solution
of 1 ml H O and 0.6 ml D O at room temperature and 1 atm. The
2 2
results showed that 2 can convert about 46% of quite inert
DMMP to nontoxic methyl phosphonic acid (MP) over a time
course of 263 h without using additional chemicals (Figure 4a).
Compared with a blank experiment without 2 under the same
conditions, no obvious conversion detected, revealing that 2 is
an efficient DMMP hydrolysis catalyst. Notably, 2 is more active
than many MOFs towards DMMP and comparable with the
Angew. Chem. Int. Ed. 2008, 47, 2398-2401; d) T. Wu, L. Wang, X. Bu,
V. Chau, P. Feng, J. Am. Chem. Soc. 2010, 132, 10823-10831.
a) T. Wu, Q. Zhang, Y. Hou, L. Wang, C. Mao, S. T. Zheng, X. Bu, P.
Feng, J. Am. Chem. Soc. 2013, 135, 10250-10253; b) J. B. Peng, X. J.
Kong, Q. C. Zhang, M. Orendáč, J. Prokleška, Y. P. Ren, L. S. Long, Z.
Zheng, L. S. Zheng, J. Am. Chem. Soc. 2014, 136, 17938-17941; c) G.
Zhang, C. Liu, D. L. Long, L. Cronin, C. H. Tung, Y. Wang, J. Am.
Chem. Soc. 2016, 138, 11097-11100; d) O. Renier, C. Falaise, H. Neal,
K. Kozma, M. Nyman, Angew. Chem. 2016, 128, 13678-13682; Angew.
Chem. Int. Ed. 2016, 55, 13480-13484.
[
2]
[3]
a) U. Kortz, A. Müller, J. van Slageren, J. Schnack, N. S. Dalal, M.
Dressel, Coord. Chem. Rev. 2009, 253, 2315-2327; b) D. L. Long, R.
Tsunashima, L. Cronin, Angew. Chem. 2010, 122, 1780-1803; Angew.
Chem. Int. Ed. 2010, 49, 1736-1758; c) May Nyman, P. C. Burns,
Chem. Soc. Rev, 2012, 41, 7354-7367; d) E. Cadot, M. N. Sokolov, V.
P. Fedin, C. Simonnet-Jégat, S. Floquet, F. Sécheresse, Chem. Soc.
Rev. 2012, 41, 7335-7353; e) Y. F. Song, R. Tsunashim, Chem. Soc.
Rev. 2012, 41, 7384-7402.
effective PONb K12[Ti
2 2 2
O ][GeNb12O40]·19H O reported recently
by Hill’s group (56 % conversion under the same reaction
[
16a]
conditions).
The extent of conversion was calculated as the
31
ratio of the integrated P NMR peak for MP (the only hydrolysis
product) to that of DMMP (Figure S11).
In order to check the stability of 2 during the catalytic process,
some experiments were performed by us. On the one hand, the
recyclability of 2 was investigated by directly adding additional
substrate DMMP (15.5 mM) into the reaction mixture when the
previous run was completed. The results show 2 has very good
recyclability with almost the same DMMP conversions for three-
run duplicate operations (Figure 4b). On the other hand, IR and
PXRD measurements were conducted for powder crystallinity
obtained by volatilizing the solution after three-run successive
catalytic reactions at room temperature. Both IR spectrum and
PXRD of 2 were well consistent with those of the powder
crystallinity obtained from the solution after catalytic reactions
[4]
a) A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, F. Peters,
Angew. Chem. 1998, 110, 3567-3571; Angew. Chem. Int. Ed. 1998, 37,
3360-3363; b) A. Müller, E. Krickemeyer, J. Meyer, H. Bögge, F. Peters,
W. Plass, E. Diemann, S. Dillinger, F. Nonnenbruch, M. Randerath, C.
Menke, Angew. Chem. 1995, 107, 2293-2295; Angew. Chem. Int. Ed.
1
995, 34, 2122-2124; c) A. Müller, E. Krickemeyer, H. Bögge, M.
Schmidtmann, C. Beugholt, P. Kögerler, C. Lu, Angew. Chem. 1998,
10, 1278-1281; Angew. Chem. Int. Ed. 1998, 37, 1220-1223; d) A.
1
Müller, S. Q. N. Shah, H. Bögge, M. Schmidtmann, Nature. 1999,
397,48-50; e) A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, A.
Dress, Angew. Chem. 2002, 114, 1210-1215; Angew. Chem. Int. Ed.
2002, 41, 1162-1167; f) S. Garai, M. Rubčić, H. Bçgge, E. T. K. Haupt,
P. Gouzerh, A. Müller, Angew. Chem. 2015, 127, 5977-5980; Angew.
Chem. Int. Ed. 2015, 54, 5879-5882.
(
Figure 4c,d), confirming that 2 could maintain its structural
integrity after catalytic reaction.
[5]
a) H. Y. Zang, H. N. Miras, D. L. Long, B. Rausch, L. Cronin, Angew.
Chem. 2013, 125, 7041-7044; Angew. Chem. Int. Ed. 2013, 52, 6903-
6906; b) X Fang, L. Hansen, F. Haso, P. Yin, A. Pandey, L. Engelhardt,
I. Slowing, T. Li, T. Liu, M. Luban, D. C. Johnston, Angew. Chem. 2013,
125, 10694-10698; Angew. Chem. Int. Ed. 2013, 52, 10500-10504; c) P.
Yin, B. Wu, T. Li, P. V. Bonnesen, K. Hong, S. Seifert, L. Porcar, C. Do,
J. K. Keum, J. Am. Chem. Soc. 2016, 138, 10623-10629; d) V. Duros,
J. Grizou, W. Xuan, Z. Hosni, D. L. Long, H. N. Miras, L. Cronin, Angew.
Chem. 2017, 129, 10955-10960; Angew. Chem. Int. Ed. 2017, 56,
In summary, for the first time, a PONb Nb288 with hundreds of
niobium centers and over 4 nm in diameter has been artificially
synthesized. It is the largest molecular niobium aggregate and
the second highest nuclearity POM to date. Further, in Nb288, the
W-shapled high-nuclearity PONb building unit Nb47 with three
3
types of new fragments Nb17, Nb10, and Nb has a brand-new
topology to POM chemistry, providing a new member of very
limited Nb-O clluster family. Especially, the novel Nb47 formed in
situ can be stabilized and isolated by copper complexes to form
an extended framework, which is effective hydrolysis catalyst for
nerve agent simulant of DMMP. The results represent a major
step forward in the development of PONb system and open up
new perspectives for the development of diverse and larger
PONb materials parallel to the POMo and POT systems.
10815-10820; e) W. Xuan, R. Pow, D. L. Long, L. Cronin, Angew.
Chem. 2017, 129, 9859-9863; Angew. Chem. Int. Ed. 2017, 56, 9727-
9731; f) M. A. Moussawi, M. Haouas, S. Floquet, W. E. Shepard, P. A.
Abramov, M. N. Sokolov, V. P. Fedin, S. Cordier, A. Ponchel, E.
Monflier, J. Marrot, E. Cadot, J. Am. Chem. Soc. 2017, 139, 14376-
14379.
[
6]
a) B. Godin, Y. G. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer,
P. Gouzerh, Angew. Chem. 2005, 117, 3132-3135; Angew. Chem. Int.
Ed. 2005, 44, 3072-3075; b) S. S. Mal, U. Kortz, Angew. Chem. 2005,
117, 3843-3846; Angew. Chem. Int. Ed. 2005, 44, 3777-3780; c) B. S.
Acknowledgements
Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. Wang, J. van Tol, N. S.
Dalal, K. Y. Choi, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, Angew.
Chem. 2011, 123, 6083-6087; Angew. Chem. Int. Ed. 2011, 50, 5961-
We gratefully acknowledge the financial support from the NSFs
of China (No. 21773029), National 1000 Youth Talents Plan,
and 111 project.
5964; d) S. Li, S. Liu, S. Liu, Y. Liu, Q. Tang, Z. Shi, S. Ouyang, J. Ye,
J. Am. Chem. Soc. 2012, 134, 19716-19721.
[7]
a) C. Zhan, J. M. Cameron, J. Gao, J. W. Purcell, D. L. Long, L. Cronin,
Angew. Chem. 2014, 126, 10530-10534; Angew. Chem. Int. Ed. 2014,
53, 10362-10366; b) L. Huang, S. S. Wang, J. W. Zhao, L. Cheng, G. Y.
Yang, J. Am. Chem. Soc. 2014, 136, 7637-7642; c) C. H. Zhan, R. S.
Winter, Q. Zheng, J. Yan, J. M. Cameron, D. L. Long, L. Cronin, Angew.
Chem. 2015, 127, 14516-14520; Angew. Chem. Int. Ed. 2015, 54,
Keywords: polyoxometalate • polyoxoniobate • macromolecule •
high-nuclearity
[
1]
a) A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Chem. Rev. 1998, 98,
1
4308-14312; d) T. Minato, K. Suzuki, K. Yamaguchi, N. Mizuno,
Angew. Chem. 2016, 128, 9758-9761; Angew. Chem. Int. Ed. 2016, 55,
630-9633.
239-271; b) P. Feng, X. Bu, N. Zheng, Acc. Chem. Res.
2005, 38, 293-303; c) X. J. Kong, Y. P. Ren, W. X. Chen, L. S. Long, Z.
9
Zheng, R. B. Huang, L. S. Zheng, Angew. Chem. 2008, 120, 2432-2435;
This article is protected by copyright. All rights reserved.