Welcome to LookChem.com Sign In|Join Free

CAS

  • or

115794-67-7

Post Buying Request

115794-67-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 2-Oxiranecarboxylicacid, 3-phenyl-, methyl ester, (2R,3S)-

    Cas No: 115794-67-7

  • No Data

  • No Data

  • No Data

  • CHEMSTEP
  • Contact Supplier

115794-67-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 115794-67-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,5,7,9 and 4 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 115794-67:
(8*1)+(7*1)+(6*5)+(5*7)+(4*9)+(3*4)+(2*6)+(1*7)=147
147 % 10 = 7
So 115794-67-7 is a valid CAS Registry Number.
InChI:InChI=1/C10H10O3/c1-12-10(11)9-8(13-9)7-5-3-2-4-6-7/h2-6,8-9H,1H3/t8-,9+/m0/s1

115794-67-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name methyl (2R,3S)-3-phenyloxirane-2-carboxylate

1.2 Other means of identification

Product number -
Other names Methyl trans-3-phenyl-2,3-epoxy-propanoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:115794-67-7 SDS

115794-67-7Relevant articles and documents

Epoxidation of Alkenes with Molecular Oxygen as the Oxidant in the Presence of Nano-Al 2O 3

Zhou, Xuan,Wang, Qiong,Xiong, Wenfang,Wang, Lu,Ye, Rongkai,Xiang, Ge,Qi, Chaorong,Hu, Jianqiang

supporting information, p. 1789 - 1794 (2020/09/18)

The nano-Al 2O 3-promoted epoxidation of alkenes with molecular oxygen as the oxidant has been developed, providing an efficient route to a variety of epoxides in moderate to excellent yields. The environmentally friendly and efficient nano-Al 2O 3catalyst could be easily recovered and reused five times without significant loss of activity.

Intermolecular Amine Transfer to Enantioenriched trans-3Phenylglycidates by an α/β-Aminomutase to Access Both anti-Phenylserine Isomers

Shee, Prakash K.,Yan, Honggao,Walker, Kevin D.

, p. 15071 - 15082 (2020/12/21)

β-Hydroxy-α-amino acids are noncanonical amino acids with two stereocenters and with useful applications in the pharmaceutical and agrochemical sectors. Here, a 5-methylidene-3,5-dihydro-4H-imidazol-4-one-dependent aminomutase from Taxus canadensis (TcPAM) was repurposed to transfer the amino group irreversibly from (2S)-styryl-α-alanine to exogenously supplied trans-3-phenylglycidate enantiomers, producing anti-phenylserines stereoselectively. TcPAM catalysis inverted the intrinsic regioselective chemistry from amination at Cβ to Cα of enantioenriched trans-3-phenylglycidates to make phenylserine predominantly (97%)phenylisoserine (~3% relative abundance). Gas chromatography?mass spectrometry analysis of the chiral auxiliary derivatives of the biocatalyzed products confirmed that the amine transfer was stereoselective for each glycidate enantiomer. TcPAM converted (2S,3R)-3-phenylglycidate to (2S)-anti-phenylserine predominantly (89%) and (2R,3S)-3-phenylglycidate to (2R)-anti-phenylserine (88%)their antipodes, with inversion of the configuration at Cα in each case. Both glycidate enantiomers formed a small amount (~10%) of syn-phenylserine by retaining the configuration at Cα. The minor syn-isomer likely came from a β-hydroxy oxiranone intermediate formed by intramolecular ring opening of the oxirane ring by the carboxylate before amine transfer. TcPAM had a slight preference toward (2S,3R)-3-phenylglycidate, which was turned(kcat = 0.3 min?1) 1.5 times faster than the (2R,3S)-glycidate (kcat = 0.2 min?1). The catalytic efficiencies (kcatapp/KMapp ≈ 20 M?1s?1) of TcPAM for the antipodes were similar. The kinetic data supported a two-substrate ping-pong mechanism for the amination of the phenylglycidates, with competitive inhibition at higher glycidate substrate concentrations.

Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridine-Containing Ligand)] Complexes

Tseberlidis, Giorgio,Demonti, Luca,Pirovano, Valentina,Scavini, Marco,Cappelli, Serena,Rizzato, Silvia,Vicente, Rubén,Caselli, Alessandro

, p. 4907 - 4915 (2019/08/30)

A highly reactive and selective catalytic system comprising Fe(III) and macrocyclic pyridine-containing ligands (Pc-L) for alkene oxidation by using hydrogen peroxide is reported herein. Four new stable iron(III) complexes have been isolated and characterized. Importantly, depending on the anion of the iron(III) metal complex employed as catalyst, a completely reversed selectivity was observed. When X=OTf, a selective dihydroxylation reaction took place. On the other hand, employing X=Cl resulted in the epoxide as the major product. The reaction proved to be quite general, tolerating aromatic and aliphatic alkenes as well as internal or terminal double bonds and both epoxides and diol products were obtained in good yields with good to excellent selectivities (up to 93 % isolated yield and d.r.=99 : 1). The catalytic system proved its robustness by performing several catalytic cycles, without observing catalyst deactivation. The use of acetone as a solvent and hydrogen peroxide as terminal oxidant renders this catalytic system appealing.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 115794-67-7