101-06-4Relevant articles and documents
KOt-Bu-promoted selective ring-opening N-alkylation of 2-oxazolines to access 2-aminoethyl acetates and N-substituted thiazolidinones
Li, Bin,Lin, Qiao,Zhang, Shiling
, p. 492 - 501 (2020)
An efficient and simple KOt-Bu-promoted selective ring-opening N-alkylation of 2-methyl-2-oxazoline or 2-(methylthio)-4,5-dihydrothiazole with benzyl halides under basic conditions is described for the first time. The method provides a convenient and practical pathway for the synthesis of versatile 2-aminoethyl acetates and N-substituted thiazolidinones with good functional group tolerance and selectivity. KOt-Bu not only plays an important role to promote this ring-opening N-alkylation, but also acts as an oxygen donor.
Hydrogen-Borrowing Alkylation of 1,2-Amino Alcohols in the Synthesis of Enantioenriched γ-Aminobutyric Acids
Hall, Christopher J. J.,Goundry, William R. F.,Donohoe, Timothy J.
supporting information, p. 6981 - 6985 (2021/03/01)
For the first time we have been able to employ enantiopure 1,2-amino alcohols derived from abundant amino acids in C?C bond-forming hydrogen-borrowing alkylation reactions. These reactions are facilitated by the use of the aryl ketone Ph*COMe. Racemisation of the amine stereocentre during alkylation can be prevented by the use of sub-stoichiometric base and protection of the nitrogen with a sterically hindered triphenylmethane (trityl) or benzyl group. The Ph* and trityl groups are readily cleaved in one pot to give γ-aminobutyric acid (GABA) products as their HCl salts without further purification. Both steps may be performed in sequence without isolation of the hydrogen-borrowing intermediate, removing the need for column chromatography.
A Bifunctional Copper Catalyst Enables Ester Reduction with H2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides
Kaicharla, Trinadh,Ngoc, Trung Tran,Teichert, Johannes F.,Tzaras, Dimitrios-Ioannis,Zimmermann, Birte M.
supporting information, p. 16865 - 16873 (2021/10/20)
Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simultaneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guanidinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered "soft"copper(I) hydrides to previously unreactive "hard"ester electrophiles and paves the way for a replacement of stoichiometric reducing agents by a catalyst and H2.