118-92-3Relevant articles and documents
Synthesis of oxazolidinones from N-aryl-carbamate and epichlorohydrin under mild conditions
Buscemi, Silvestre,Insuasty, Braulio,Marzullo, Paola,Moreno, Leydi Marcela,Piccionello, Antonio Palumbo
supporting information, p. 140 - 155 (2022/03/27)
The reaction conditions for an enantiospecific synthesis of various N-aryl-oxazolidinones from N-aryl-carbamates and (R) or (S) epichlorohydrin were optimized. The N-aryl-oxazolidinones were applied to the synthesis of compounds of biological interest such as DuP 721, toloxatone and a linezolid analogue.
Hydroxamic acid rearrangement method for O-amino aromatic acid
-
Paragraph 0018-0026, (2021/09/29)
The invention relates to the field of organic functional new material chemicals, and discloses a novel process technology for preparation of a hydroxamic acid precursor body weight discharge method of a plurality of o-amino aromatic acids in the first time. These substances are well known dyes and pigment and pharmaceutical pesticide-related fields and have a wide range of critical fine chemicals.
NaI/PPh3-Mediated Photochemical Reduction and Amination of Nitroarenes
Qu, Zhonghua,Chen, Xing,Zhong, Shuai,Deng, Guo-Jun,Huang, Huawen
supporting information, p. 5349 - 5353 (2021/07/21)
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis
Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal
, p. 3943 - 3957 (2021/04/12)
The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.
Copper nanoparticles (CuNPs) catalyzed chemoselective reduction of nitroarenes in aqueous medium
Chand, Dillip Kumar,Rai, Randhir
, (2021/08/20)
Abstract: A procedure for practical synthesis of CuNPs from CuSO4·5H2O is established, under appropriate reaction conditions, using rice (Oryza sativa) as an economic source of reducing as well as a stabilizing agent. Optical and microscopic techniques are employed for the characterization of the synthesized CuNPs and the sizes of the particles were found to be in the range of 8 ± 2 nm. The nanoparticles are used as a catalyst for chemoselective reduction of aromatic nitro compounds to corresponding amines under ambient conditions and water as a reaction medium. Graphic abstract: CuNPs are synthesized using hydrolysed rice and used as catalyst for chemoselective reduction of nitroarenes to their corresponding amines in water. [Figure not available: see fulltext.]
Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water
Zeynizadeh, Behzad,Mohammad Aminzadeh, Farkhondeh,Mousavi, Hossein
, p. 3289 - 3312 (2021/05/11)
Developing and/or modifying fundamental chemical reactions using chemical industry-favorite heterogeneous recoverable catalytic systems in the water solvent is very important. In this paper, we developed convenient, green, and efficient approaches for the chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes in the presence of the recoverable heterogeneous carbon-supported palladium (Pd/C) catalytic system in water. The utilize of the simple, effective, and recoverable catalyst and also using of water as an entirely green solvent along with relatively short reaction times and good-to-excellent yields of the desired products are some of the noticeable features of the presented synthetic protocols. Graphic abstract: [Figure not available: see fulltext.].
Synthesis of CoFe2O4@Pd/Activated carbon nanocomposite as a recoverable catalyst for the reduction of nitroarenes in water
Hamadi, Hosein,Kazeminezhad, Iraj,Mohammadian, Sara
, (2021/07/06)
Efficient reduction of nitro compounds into amines is an important industrial transformation. So, it is a great deal to design new catalysts for efficient reduction of the nitro compounds especially in water. In this work, a new magnetic Pd/activated carbon nanocomposite (CoFe2O4@Pd/AC) was synthesized via metal-impregnation-pyrolysis method. The CoFe2O4@Pd/AC was fully characterized by FT-IR, PXRD, FESEM, TEM, VSM, EDX-mapping and BET techniques. The results showed that CoFe2O4@Pd/AC is a highly reactive and easily recoverable magnetic catalyst for the reduction of the nitro compounds by using NaBH4 in water. For instance, aniline was obtained in high yield (99%) after 75 ?min at 25 ?C by using just 6 ?mg of the catalyst. In addition, CoFe2O4@Pd/AC was recovered by a simple magnetic decantation and it exhibits stable activity and remains intact during the catalytic process with no significant loss in activity (8 cycles).
Reduction of dinitrobenzenes by electron-carrying catalysts in the electrosynthesis of diaminobenzenes
Abakumov, M. V.,Leonova, M. Yu.,Mikhalchenko, L. V.,Novikov, V. T.,Zaplavin, A. P.
, p. 1927 - 1933 (2021/11/05)
The interaction of isomeric dinitrobenzenes (DNBs) with titanium(III), tin(II), and vanadium(II) chlorides, which are reducing agents used as electron carriers in the electrosynthesis of diaminobenzenes, has been studied. Rate constants of the reduction of isomeric DNBs and nitrophenylhydroxylamines by SnCl2 and TiCl3 in a 2 M water-alcohol solution (10 vol.% C2H5OH) of HCl were measured, and activation energies of the reduction of isomeric DNBs were determined. The rates of interaction of DNBs with the listed mediators increase in the series SnCl2 3 2. It is shown that the electrolysis of DNBs in the presence of an excess of these mediators makes it possible to obtain the corresponding diaminobenzenes with a yield of 60–90%.
Pd nanoparticles/graphene quantum dot supported on chitosan as a new catalyst for the reduction of nitroarenes to arylamines
Kalanpour, Nastaran,Nejati, Saeid,Keshipour, Sajjad
, p. 1243 - 1250 (2020/10/29)
A new heterogeneous catalyst was obtained by growing graphene quantum dots on chitosan and subsequent immobilization of Pd nanoparticles. The catalyst after characterization was used in the reduction of nitroarenes to the corresponding amines by NaBH4 as a weak reducing agent of nitro compounds. The catalyst exhibited excellent catalytic activity and selectivity under mild reaction conditions in water as a green solvent during 1?h. Additionally, the catalyst can be reused for five consecutive runs without any significant decrease in its activity and selectivity.
Mitochondria-localizing curcumin-cryptolepine Zn(II) complexes and their antitumor activity
Qin, Li-Qin,Liang, Chun-Jie,Zhou, Zhen,Qin, Qi-Pin,Wei, Zu-Zhuang,Tan, Ming-Xiong,Liang, Hong
, (2021/01/18)
Many metal complexes are potent candidates as mitochondrial-targeting agents. In this study, four novel Zn(II) complexes, [Zn(BPQA)Cl2] (Zn1), [Zn(BPQA)(Curc)]Cl (Zn2), [Zn(PQA)Cl2] (Zn3), and [Zn(PQA)(Curc)]Cl (Zn4), containing N,N-bis(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (BPQA), N-(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (PQA), and curcumin (H-Curc) were synthesized. An MTT assay showed that Zn1–Zn4 had strong anticancer activities against SK-OV-3/DDP and T-24 tumor cells with IC50 values of 0.03–6.19 μM. Importantly, Zn1 and Zn2 displayed low toxicities against normal HL-7702 cells. Mechanism experiments demonstrated that probe Zn2 showed appreciable fluorescence in the red region of the spectrum, and substantial accumulation of Zn2 occurred in the mitochondria after treatment, indicating increases in Ca2+ and reactive oxygen species levels, loss of the mitochondrial membrane potential, and consequent induction of mitochondrial dysfunction at low concentrations. In addition, the probe Zn2 effectively (50.7%) inhibited the growth of T-24 bladder tumor cells in vivo. The probe Zn2 shows potential for use in cancer therapy while retaining the H-Curc as an imaging probe.