18437-68-8Relevant articles and documents
Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α-Nitrotoluenes to E-Nitroethenes
Chong, Xiaodan,Liu, Cuibo,Wang, Changhong,Yang, Rong,Zhang, Bin
supporting information, p. 22010 - 22016 (2021/09/02)
Developing an electrochemical carbon-added reaction with accelerated kinetics to replace the low-value and sluggish oxygen evolution reaction (OER) is markedly significant to pure hydrogen production. Regulating the critical steps to precisely design electrode materials to selectively synthesize targeted compounds is highly desirable. Here, inspired by the surfaced adsorbed SeOx2? promoting OER, NiSe is demonstrated to be an efficient anode enabling α-nitrotoluene electrooxidation to E-nitroethene with up to 99 % E selectivity, 89 % Faradaic efficiency, and the reaction rate of 0.25 mmol cm?2 h?1 via inhibiting side reactions for energy-saving hydrogen generation. The high performance can be associated with its in situ formed NiOOH surface layer and absorbed SeOx2? via Se leaching-oxidation during electrooxidation, and the preferential adsorption of two -NO2 groups of intermediate on NiOOH. A self-coupling of α-carbon radicals and subsequent elimination of a nitrite molecule pathway is proposed. Wide substrate scope, scale-up synthesis of E-nitroethene, and paired productions of E-nitroethene and hydrogen or N-protected aminoarenes over a bifunctional NiSe electrode highlight the promising potential. Gold also displays a similar promoting effect for α-nitrotoluene transformation like SeOx2?, rationalizing the strategy of designing materials to suppress side reactions.
Chiral Phosphoric Acid Catalyzed Asymmetric Desymmetrization of para-Quinamines with Isocyanates: Access to Functionalized Imidazolidin-2-one Derivatives
Hu, Kai-Wen,You, Xiao,Wang, Jin-Zheng,Wen, Xiaoan,Sun, Hongbin,Xu, Qing-Long,Lai, Zengwei
supporting information, p. 7873 - 7877 (2021/10/20)
The development of enantioselective desymmetrization of para-quinamines with isocyanates catalyzed by chiral phosphoric acid is reported. The strategy provides concise access to functionalized imidazolidin-2-one derivatives in high yields and enantioselectivities under mild reaction conditions. Remarkably, this reaction could be performed on a gram scale using 5 mol % catalyst loading and the chiral imidazolidin-2-one derivatives could be easily transformed into valuable scaffolds without disturbing the enantiopurity, demonstrating the synthetic utility of this protocol.
Nanoceria as an efficient and green catalyst for the chemoselective N-tert-butyloxycarbonylation of amines under the solvent-free conditions
Garad, Dnyaneshwar N.,Ingale, Ajit P.,Shinde, Sandeep V.,Ukale, Dattatraya
supporting information, p. 1656 - 1668 (2021/04/05)
Nanocerium oxide mediated an efficient and green protocol has been described for the chemoselective N-tert-butyloxycarbonylation of amines under the solvent-free conditions at ambient temperature. Various aliphatic, aromatic and heteroaromatic amines were protected using developed protocol and several functional groups such as alcohol, phenol and ester were well tolerated under these conditions. The rapid reaction rate, mild conditions, very good functional group tolerance, excellent yield, solvent-free, easy recovery products and excellent catalyst recyclability are the advantages of this protocol. This makes the protocol feasible, economical and environmentally benign.
Sulfated tungstate: A highly efficient, recyclable and ecofriendly catalyst for chemoselective N-tert butyloxycarbonylation of amines under the solvent-free conditions
Ingale, Ajit P.,Shinde, Sandeep V.,Thorat, Nitin M.
supporting information, p. 2528 - 2543 (2021/07/02)
Sulfated tungstate catalyzed an efficient and ecofriendly protocol has been described for the chemoselective N-tert-butyloxycarbonylation of amines under the solvent-free conditions at room temperature. The variety of functionalized aliphatic, aromatic and heteroaromatic amines efficiently undergoes the N-tert-butyloxycarbonylation under the developed protocol. The aminoalcohol, aminophenol, aminoester as well as various chiral amines underwent the chemoselective N-Boc protection under the optimized reaction condition. The rapid reaction rate, mild conditions, very good functional group tolerance, excellent yield, solvent-free, easy recovery products and excellent catalyst recyclability are the advantages of this protocol. This makes the protocol feasible, economical and environmentally benign.
Thiamine hydrochloride as a recyclable organocatalyst for the efficient and chemoselective N-tert-butyloxycarbonylation of amines
Ingale, Ajit P.,Garad, Dnyaneshwar N.,Ukale, Dattatraya,Thorat, Nitin M.,Shinde, Sandeep V.
supporting information, p. 3791 - 3804 (2021/11/04)
Thiamin hydrochloride promoted highly efficient and ecofriendly approach has been described for the chemoselective N-tert-butyloxycarbonylation of amines under solvent-free conditions at ambient temperature. The demonstrated approach has been applicable for the N-Boc protection of variety of aliphatic, aryl, heteroaryl amines. The chemoselective protection of amino group occurs in chiral amines and amino alcohol without racemization in high yield. Thiamin hydrochloride is stable, economical, easy to handle and environmentally friendly.
Base-Mediated Generation of Ketenimines from Ynamides: [3+2] Annulation with Azaallyl Anions
D'Hollander, Agathe C. A.,Romero, Eugénie,Vijayakumar, Kamsana,Le Houérou, Camille,Retailleau, Pascal,Dodd, Robert H.,Iorga, Bogdan I.,Cariou, Kevin
supporting information, p. 2903 - 2908 (2021/04/21)
Under basic conditions and heat, ynamides can serve as precursors to ketenimines, whose synthetic potential is often hampered by their difficulty of access. Herein, we report that they can undergo a [3+2] cycloaddition with 2-azaallyl anions, obtained from benzylimines under the same reaction conditions. This reaction between two highly reactive intermediates, both generated in situ from bench stable starting materials, gives access to various nitrogen-rich heterocycles. The reaction usually proceeds with excellent diastereoselectivity, in favor of the cis adduct. Deuteration experiments and DFT calculations helped rationalize the regio- and stereoselectivity of the process as well as the formation of side products. (Figure presented.).
Modular counter-Fischer?indole synthesis through radical-enolate coupling
Chung, Hyunho,Kim, Jeongyun,Gonzalez-Montiel, Gisela A.,Cheong, Paul Ha-Yeon,Lee, Hong Geun
supporting information, p. 1096 - 1102 (2021/01/26)
A single-electron transfer mediated modular indole formation reaction from a 2-iodoaniline derivative and a ketone has been developed. This transition-metal-free reaction shows a broad substrate scope and unconventional regioselectivity trends. Moreover, important functional groups for further transformation are tolerated under the reaction conditions. Density functional theory studies reveal that the reaction proceeds by metal coordination, which converts a disfavored 5-endo-trig cyclization to an accessible 7-endo-trig process.
Ultrasound promoted environmentally benign, highly efficient, and chemoselective N-tert-butyloxycarbonylation of amines by reusable sulfated polyborate
Pise, Ashok S.,Ingale, Ajit P.,Dalvi, Navnath R.
supporting information, p. 3768 - 3780 (2021/10/26)
The sulfated polyborate catalyzed an efficient and chemoselective N-tert-butyloxycarbonylation of amines under ultrasonic irradiation is developed. A broad substrate scope has been demonstrated for N-Boc protection of various primary/secondary amines. It allows converting several aliphatic/aryl/heteroaryl amines, amino alcohol, aminoester, and chiral amines to their N-Boc-protected derivatives under solvent-free conditions with excellent yields. The protocol has several advantages such as easy catalyst, and product isolation, short reaction time, excellent yields, outstanding chemoselectivity, and catalyst recyclability, among others. This makes the process practicable, economical, and environmentally benign.
Highly efficient chemoselective N-tert butoxycarbonylation of aliphatic/aromatic/heterocyclic amines using diphenylglycoluril as organocatalyst
Awasthi, Amardeep,Mukherjee, Anagh,Singh, Mandeep,Rathee, Garima,Vanka, Kumar,Chandra, Ramesh
, (2020/05/14)
An efficient approach for the Chemoselective N-tert-butoxycarbonylation of a variety of amines using diphenylglycoluril as organocatalyst has been described. For the first time, a plausible mechanism for the N-tert-butoxycarbonylation has been proposed using density functional theory (DFT) calculations supported by NMR studies. The reusability of the organocatalyst and observation of the desired N-Boc protected amines being formed without the formation of side products like urea, oxazolidinone, isocyanate, and N, N-di-Boc derivatives makes the present protocol desirable.
A Greener Approach for the Chemoselective Boc Protection of Amines Using Sulfonated Reduced Graphene Oxide as a Catalyst in Metal- And Solvent-Free Conditions
Awasthi, Satish K.,Mishra, Anupam,Mittal, Rupali
, p. 591 - 601 (2020/02/13)
Sulfonated reduced graphene oxide (SrGO) has displayed great potential as a solid acid catalyst due to its efficiency, cost-effectiveness, and reliability. In this study, SrGO was synthesized by the introduction of sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide using ultrasonication. The SrGO catalyst was characterized by Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Further, SrGO was effectively utilized as a metal-free and reusable solid acid catalyst for the chemoselective N - t -Boc protection of various aromatic and aliphatic amines under solvent-free conditions. The N - t -Boc protection of amines was easily achieved under ambient conditions affording high yields (84-95percent) in very short reaction times (5 min-2 h). The authenticity of the approach was confirmed by a crystal structure. The catalyst could be easily recovered and was reused up to seven consecutive catalytic cycles without any substantial loss in its activity.