18698-97-0Relevant articles and documents
-
Dippy,Williams
, p. 1888,1889 (1934)
-
Macrolactam Synthesis via Ring-Closing Alkene-Alkene Cross-Coupling Reactions
Goh, Jeffrey,Loh, Teck-Peng,Maraswami, Manikantha
supporting information, p. 9724 - 9728 (2020/12/21)
Reported herein is a practical method for macrolactam synthesis via a Rh(III)-catalyzed ring closing alkene-alkene cross-coupling reaction. The reaction proceeded via a Rh-catalyzed alkenyl sp2 C-H activation process, which allows access to macrocyclic molecules of different ring sizes. Macrolactams containing a conjugated diene framework could be easily prepared in high chemoselectivities and Z,E stereoselectivities.
The palladium(ii)-catalyzed regioselective ortho-C-H bromination/iodination of arylacetamides with in situ generated imidic acid as the directing group: Mechanistic exploration
Jaiswal, Yogesh,Kumar, Yogesh,Kumar, Amit
, p. 6809 - 6820 (2019/07/22)
In the present study, we report the palladium(ii)-catalyzed regioselective ortho-C-H bromination/iodination of challenging arylacetamide derivatives using N-halosuccinimides as halogenating agents. Diverse arylacetamides underwent the regioselective ortho-bromination and iodination of aromatic C-H bonds in the presence of a reactive benzylic C(sp3)-H bond without installing any bulky auxiliaries via unfavorable six-membered metallacycles. Weak coordination, the use of ubiquitous primary amides for challenging C-H functionalization, the simple catalytic system and the wide substrate scope are the key features of this transformation. Further, the halogenated amide derivatives were transformed into a variety of valuable synthons. Detailed mechanistic studies revealed some interesting aspects concerning the reaction pathway. We present for the first time strong evidence for the formation of imidic acid (in situ) from primary amides under Br?nsted acid conditions that eventually aids in the stabilization of palladacycles of amide derivatives and drives regioselective C-X bond formation.