22966-24-1Relevant articles and documents
Development of pyridazine derivatives as potential EGFR inhibitors and apoptosis inducers: Design, synthesis, anticancer evaluation, and molecular modeling studies
Ahmed, Marwa F.,Santali, Eman Y.,Mohi El-Deen, Eman M.,Naguib, Ibrahim A.,El-Haggar, Radwan
, (2020/11/27)
Novel hybrids of pyridazine-pyrazoline were synthesized aiming to develop new antiproliferative candidates. All compounds were submitted to the National Cancer Institute (NCI), USA, and many were proved to have significant antiproliferative activity. In addition, in vitro studies of the epidermal growth factor receptor (EGFR) inhibition showed that compounds IXn, IXg, IXb and IXl exhibited excellent inhibitory effect (IC50 = 0.65, 0.75, 0.82 and 0.84 μM, respectively) compared to Erlotinib (IC50 = 0.95 μM). The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compounds IXg and IXn due to their significant EGFR inhibition. Flow cytometeric analysis indicated that compounds IXg and IXn result in increased cell numbers in phase G2/M, suggesting cell cycle arrest in phase G2/M in UO-31cells. Furthermore, real time PCR assay illustrated that compounds IXg and IXn elevated Bax/Bcl2 ratio which confirmed the mechanistic pathway of them. Moreover, the apoptotic induction of UO-31 renal cancer cells was enhanced effectively through activation of caspase-3 by compounds IXg and IXn. On the other hand, molecular docking study was performed to investigate binding mode of interaction of compounds with EGFR-PK in the active site with the aim of rationalizing its promising inhibitory activity. Finally, based on the aforementioned findings, compounds IXg and IXn could be considered as effective apoptosis modulators and promising leads for future development of new anti-renal cancer agents.
Curcumin-cinnamaldehyde hybrids as antiproliferative agents against women’s cancer cells
Anselmo, Daiane B.,Polaquini, Carlos R.,Marques, Beatriz C.,Ayusso, Gabriela M.,Assis, Letícia R.,Torrezan, Guilherme S.,Rahal, Paula,Fachin, Ana L.,Calmon, Marília F.,Marins, Mozart A.,Regasini, Luis O.
, p. 2007 - 2015 (2021/08/31)
Curcumin and cinnamaldehyde are natural products whose antineoplastic activity has been well explored in biological evaluations. However, their poor chemical stability under physiological conditions has been an obstacle to their use as therapeutic agents. Herein, we designed and synthesized two series of curcumin-cinnamaldehyde hybrids by removing reactive functionalities, including β-diketone and aldoxyl moieties. All compounds were evaluated by the MTT assay to determine their antiproliferative activity against women’s cancer cells. Compound 5a (3′-hydroxychalcone) demonstrated potent antiproliferative activity against all cancer cell lines tested, with IC50 values ranging from 2.7 to 36.5 μM. Compound 5a was more active and selective than curcumin and cinnamaldehyde (parent compounds) against the CaSki, SiHa, C33, and A431 cell lines, displaying a higher selectivity index (SI = 8.5) than curcumin (SI = 0.8) toward the non-tumorigenic HaCaT cell line. Clonogenic experiments indicated that compound 5a inhibited A431 colony formation in a concentration-dependent manner. In addition, 5a was more stable than its parent compounds in pH 7.4 at 37 °C. In silico investigations suggested that 5a has good drug-likeness properties. In conclusion, our results indicate the use of curcumin and cinnamaldehyde as parent compounds for the design of hybrids with attractive antiproliferative activity and chemical stability.
Green method for high-selectivity synthesis of chalcone compounds
-
Paragraph 0043-0046, (2021/10/02)
Under the condition of air, the water-soluble inorganic weak base is used as a catalyst to catalyze the hydrogen transfer reaction of the propargyl alcohol compound, so that the green synthesis of the high-trans selective chalcone compound is realized. Reaction temperature: 80 - 120 °C and reaction time 12 - 48 hours. To the technical scheme, any transition metal catalyst and ligand do not need to be used, inert gas protection is not needed, no other byproducts are generated, the atom economy 100%, green and environment friendliness are avoided, and the product is a high-selectivity (E)-type product. The reaction conditions are relatively low in requirement. Compared with the prior art, the alkali catalyst is obvious in advantages, and has a certain application prospect in the fields of organic synthesis, biochemistry, medicine and the like.
A new method for the synthesis of chalcone derivatives promoted by PPh3/I2under non-alkaline conditions
Xue, Kangsheng,Sun, Guoxiang,Zhang, Yanzhi,Chen, Xubing,Zhou, Yang,Hou, Jinjun,Long, Huali,Zhang, Zijia,Lei, Min,Wu, Wanying
supporting information, p. 625 - 634 (2020/11/23)
A straightforward and general method has been developed for the synthesis of chalcone derivatives by a Claisen-Schmidt reaction in the presence of PPh3/I2 in 1,4-dioxane under reflux temperatures. With the condensation of the aromatic ketone and aldehyde occurring at non-strongly alkaline conditions, our proposed method significantly expands the range of applicable substrates, especially for groups that are unstable under alkaline conditions.
Promising Non-cytotoxic Monosubstituted Chalcones to Target Monoamine Oxidase-B
Iacovino, Luca G.,Pinzi, Luca,Facchetti, Giorgio,Bortolini, Beatrice,Christodoulou, Michael S.,Binda, Claudia,Rastelli, Giulio,Rimoldi, Isabella,Passarella, Daniele,Di Paolo, Maria Luisa,Dalla Via, Lisa
supporting information, p. 1151 - 1158 (2021/06/30)
A library of monosubstituted chalcones (1-17) bearing electron-donating and electron-withdrawing groups on both aromatic rings were selected. The cell viability on human tumor cell lines was evaluated first. The compounds unable to induce detectable cytotoxicity (1, 13, and 14) were tested using the monoamine oxidase (MAO) activity assay. Interestingly, they inhibit MAO-B, acting as competitive inhibitors, with 13 and 14 showing the best profiles. In particular, 13 exhibited a potency higher than that of safinamide, taken as a reference. Docking studies and crystallographic analysis showed that in human MAO-B 13 binds with the halogen-substituted aromatic ring in the entrance cavity, similar to safinamide, whereas 14 is accommodated in the opposite way. The main conclusion of this cell biology, biochemistry, and structural study is to highlights 13 as a chalcone derivative that is worth consideration for the development of novel MAO-B-selective inhibitors for the treatment of neurodegenerative diseases.
Iodine-catalyzed α,β-dehydrogenation of ketones and aldehydes generating conjugated enones and enals
Cao, Yuanjie,Chen, Tieqiao,Huang, Tianzeng,Liu, Long
, p. 8697 - 8701 (2020/06/08)
A transition metal-free α,β-dehydrogenation of ketones and aldehydes was developed. This reaction was conducted in a facile I2/KI/DMSO system to produce the corresponding unsaturated compounds in good to high yields. The gram-scale experiment also indicated the potential synthetic value of this new reaction in organic synthesis. In the reaction, DMSO acted as both solvent and mild oxidant.
DBU-Catalyzed Rearrangement of Secondary Propargylic Alcohols: An Efficient and Cost-Effective Route to Chalcone Derivatives
De, Rimpa,Savarimuthu, Antony,Ballav, Tamal,Singh, Pijush,Nanda, Jayanta,Hasija, Avantika,Chopra, Deepak,Bera, Mrinal K.
, p. 1587 - 1592 (2020/08/28)
A 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed rearrangement of diarylated secondary propargylic alcohols to give α,β-unsaturated carbonyl compounds has been developed. The typical 1,3-transposition of oxy functionality, characteristic of Mayer-Schuster rearrangements, is not observed in this case. A broad substrate scope, functional-group tolerance, operational simplicity, complete atom economy, and excellent yields are among the prominent features of the reaction. Additionally, the photophysical properties and crystal-structure-packing behavior of selected compounds were investigated and found to be of interest.
Synthesis of 3-fluoro-2,5-disubstituted furans through ring expansion ofgem-difluorocyclopropyl ketones
Amii, Hideki,Matsumura, Chihori,Sugiishi, Tsuyuka
supporting information, p. 3459 - 3462 (2020/05/25)
The synthesis of 3-fluoro-2,5-disubstituted furans fromgem-difluorocyclopropyl ketones was accomplished using trifluoromethanesulfonic acid (CF3SO3H) through ring expansion owing to the activation of the carbonyl group in the starting material. The present synthesis of 3-fluorofurans tolerates substrates designed for products with aromatic substituents at the C-2 and C-5 positions.
Methoxychalcones: Effect of methoxyl group on the antifungal, antibac-terial and antiproliferative activities
Marques, Beatriz C.,Santos, Mariana B.,Anselmo, Daiane B.,Monteiro, Diego A.,Gomes, Eleni,Saiki, Marilia F. C.,Rahal, Paula,Rosalen, Pedro L.,Sardi, Janaina C. O.,Regasini, Luis O.
, p. 881 - 891 (2020/08/19)
Background: Chalcones substituted by methoxyl groups have presented a broad spec-trum of bioactivities, including antifungal, antibacterial and antiproliferative effects. However, a clear and unambiguous investigation about the relevance of this substituent on the chalcone framework has not been described. Objective: The purpose of this work is to assess the antibacterial, antifungal and antiproliferative activities of the two series of seventeen synthesized regioisomeric methoxychalcones. Series I and II were constituted by chalcones substituted by methoxyl groups on rings A (5–12) and B (13–21), respectively. In addition, the library of methoxychalcones was submitted to in silico drug-likeness and pharmacokinetics properties predictions. Methods: Methoxychalcones were synthesized and their structures were confirmed by NMR spectral data analyses. Evaluations of antimicrobial activity were performed against five species of Candida, two Gram-negative and five Gram-positive species. For antiproliferative activity, methoxychalcones were evaluated against four human tumorigenic cell lines, as well as human non-tumorigenic keratinocytes. Drug-likeness and pharmacokinetics properties were predicted using Molinspiration and PreADMET toolkits. Results: In general, chalcones of series I are the most potent antifungal, antibacterial and antipro-liferative agents. 3’, 4’, 5’-Trimethoxychalcone (12) demonstrated potent antifungal activity against Candida krusei (MIC = 3.9 μg/mL), eight times more potent than fluconazole (reference antifungal drug). 3’-Methoxychalcone (6) displayed anti-Pseudomonas activity (MIC = 7.8 μg/mL). 2’,5’-Dimethoxychalcone (9) displayed potent antiproliferative effect against C-33A (cervix), A-431 (skin) and MCF-7 (breast), with IC50 values ranging from 7.7 to 9.2 μM. Its potency was superior to curcumin (reference antiproliferative compound), which exhibited IC50 values ranging from 10.4 to 19.0 μM. Conclusion: Our studies corroborated the relevance of methoxychalcones as antifungal, antibacte-rial and antiproliferative agents. In addition, we elucidated influence of the position and number of methoxyl groups toward bioactivity. In silico predictions indicated good drug-likeness and phar-macokinetics properties to the library of methoxychalcones.
Antiproliferative effects of chalcones on T cell acute lymphoblastic leukemia-derived cells: Role of PKCβ
Corsini, Emanuela,Facchetti, Giorgio,Esposito, Sara,Maddalon, Ambra,Rimoldi, Isabella,Christodoulou, Michael S.
, (2020/05/16)
In this study, a series of 20 chalcone derivatives was synthesized, and their antiproliferative activity was tested against the human T cell acute lymphoblastic leukemia-derived cell line, CCRF-CEM. On the basis of the structural features of the most active compounds, a new library of chalcone derivatives, according to the structure–activity relationship design, was synthesized, and their antiproliferative activity was tested against the same cancer cell line. Furthermore, four of these derivatives (compounds 3, 4, 8, 28), based on lower IC50 values (between 6.1 and 8.9 μM), were selected for further investigation regarding the modulation of the protein expression of RACK1 (receptor for activated C kinase), protein kinase C (PKC)α and PKCβ, and their action on the cell cycle level. The cell cycle analysis indicated a block in the G0/G1 phase for all four compounds, with a statistically significant decrease in the percentage of cells in the S phase, with no indication of apoptosis (sub-G0/G1 phase). Compounds 4 and 8 showed a statistically significant reduction in the expression of PKCα and an increase in PKCβ, which together with the demonstration of an antiproliferative role of PKCβ, as assessed by treating cells with a selective PKCβ activator, indicated that the observed antiproliferative effect is likely to be mediated through PKCβ induction.