23431-48-3Relevant articles and documents
An SN1-type Reaction to Form the 1,2-Dioxepane Ring: Synthesis of 10,12-Peroxycalamenene
Hilf, Justin A.,Witthoft, Luke W.,Woerpel
, p. 8262 - 8267 (2015)
The synthesis of the sesquiterpene endoperoxide natural product 10,12-peroxycalamenene has been achieved. Featured transformations include an intramolecular Heck reaction to build the fused bicyclic core and a cobalt-catalyzed peroxidation to install the peroxide functional group. The final step involved an SN1-type ring closure catalyzed by DDQ to construct the 1,2-dioxepane ring.
Cationic ruthenium-cyclopentadienyl-diphosphine complexes as catalysts for the allylation of phenols with allyl alcohol; Relation between structure and catalytic performance in O-vs. C-allylation
Van Rijn, Jimmy A.,Lutz, Martin,Von Chrzanowski, Lars S.,Spek, Anthony L.,Bouwman, Elisabeth,Drent, Eite
, p. 1637 - 1647 (2009)
A new catalytic method has been investigated to obtain either O-or C-allylated phenolic products using allyl alcohol or diallyl ether as the allyl donor. With the use of new cationic ruthenium(II) complexes as catalyst, both reactions can be performed with good selectivity. Active cationic Ru(II) complexes, having cyclopentadienyl and bidentate phosphine ligands are generated from the corresponding Ru(II) chloride complexes with a silver salt. The structures of three novel (diphosphine)Ru(II)CpCl catalyst precursor complexes are reported. It appears that the structure of the bidentate ligand has a major influence on catalytic activity as well as chemoselectivity. In addition, a strong cocatalytic effect of small amounts of acid is revealed. Model experiments are described that have been used to build a reaction network that explains the origin and evolution in time of both O-allylated and C-allylated phenolic products. Some mechanistic implications of the observed structure vs. performance relation of the [(diphosphine)RuCp]+ complexes and the cocatalytic role of added protons are discussed.
Allylphenols as a new class of human 15-lipoxygenase-1 inhibitors
Alavi, Seyed Jamal,Seyedi, Seyed Mohammad,Saberi, Satar,Safdari, Hadi,Eshghi, Hossein,Sadeghian, Hamid
, p. 259 - 266 (2020/10/12)
In this study, a series of mono- and diallylphenol derivative were designed, synthesized, and evaluated as potential human 15-lipoxygenase-1 (15-hLOX-1) inhibitors. Radical scavenging potency of the synthetic allylphenol derivatives was assessed and the results were in accordance with lipoxygenase (LOX) inhibition potency. It was found that the electronic natures of allyl moiety and para substituents play the main role in radical scavenging activity and subsequently LOX inhibition potency of the synthetic inhibitors. Among the synthetic compounds, 2,6-diallyl-4-(hexyloxy)phenol (42) and 2,6-diallyl-4-aminophenol (47) showed the best results for LOX inhibition (IC50 = 0.88 and 0.80 μM, respectively).
Enantioselective synthesis of 1-aminoindene derivativesviaasymmetric Br?nsted acid catalysis
Ding, Du,Jiang, Hua-Jie,Wang, Tao,Wu, Xiang,Zhang, Ying,Zhao, Li-Ping
supporting information, p. 9680 - 9683 (2021/09/30)
We describe a catalytic asymmetric iminium ion cyclization reaction of simple 2-alkenylbenzaldimines using a BINOL-derived chiralN-triflyl phosphoramide. The corresponding 1-aminoindenes and tetracyclic 1-aminoindanes are formed in good yields and high enantioselectivities. Further, the chemical utility of the obtained enantiopure 1-aminoindene is demonstrated for the asymmetric synthesis of (S)-rasagiline.
Preparation method 3 - phenoxybromopropane or analogue thereof
-
Paragraph 0042-0044, (2021/11/26)
The invention discloses a preparation method of 3 -phenoxybromopropane or an analogue thereof, wherein 3 - phenoxybromopropane and an allyl compound thereof are obtained through substitution reaction and addition reaction so as to avoid the inconvenience of using gaseous hydrogen bromide, 2nd-step addition reaction is realized by using the brominated salt and the acid in situ, and the process is simple in operation. The condition is easy to control, the atom economy is good, the aspect of environmental impact is low pollution, zero emission accords with the current green chemical synthesis direction, and the cost is economic.
Novel potent vasodilating agents: Evaluation of the activity and potency of LINS01005 and derivatives in rat aorta
Ginoza, Milton,Fernandes, Gustavo A.B.,Corrêa, Michelle F.,Fernandes, Jo?o Paulo S.
, (2019/12/11)
Cardiovascular diseases (CVDs) present high prevalence rates in the current world. It is estimated that approximately one-third of the global deaths are related to CVDs, and thus there is still a need for novel drugs to treat these disorders. We serendipitously discovered that LINS01005 (5a) is a potent vasodilating agent in rat aorta, and therefore a set of analogues were evaluated for the vasodilating potency in Wistar and SHR rat thoracic aorta precontracted with norepinephrine, with endothelium intact (E+) or denuded (E–) aortic rings. Compounds 5a and 5b were the most potent, showing submicromolar potency for endothelium intact vessels (EC50 853 and 941 nM, respectively) and micromolar values for E– vessels (EC50 2.4 and 7.1 μM, respectively). These compounds were indeed significantly more potent vasodilating agents in SHR-derived aortic rings (p 50 2.4 nM (E+) 9.0 nM (E–)] and 5b [EC50 20 nM (E+) 2.1 μM (E–)]. SAR analysis though PCA and HCA were performed, suggesting that N-phenylpiperazine is essential to the activity, while increasing volume in the substituted aromatic moiety is detrimental to the potency. This is the first report of the vasodilating properties of such compounds, and studies regarding the mechanism of action are in progress in our group.
Profiling of LINS01 compounds at human dopamine D2 and D3 receptors
Corrêa, Michelle F,Reiner, David,Fernandes, Gustavo A B,Varela, Marina T,Aranha, Cecília M S Q,Stark, Holger,Fernandes, Jo?o Paulo S
, (2019/12/26)
Abstract: Histamine and dopamine neuronal pathways display interesting overlapping in the CNS, especially in the limbic areas, making them very attractive to designing drugs with synergistic and/or additive effects. The roles of these systems to treat schizophrenia, drug addiction, Parkinson’s and Alzheimer’s diseases, among others are widely known. The LINS01 compounds were previously reported as histamine H3 receptor (H3R) antagonists and some of them are under evaluation in rodent memory models. Considering their pharmacological potential and similarities to literature dopamine D2 receptor (D2R) and dopamine D3 receptor (D3R) ligands, this work aimed to evaluate these compounds as ligands these receptors by using [3H]spiperone displacement assays. A set of 11 compounds containing the dihydrobenzofuranyl-piperazine core with substituents at 5-position of dihydrobenzofuran ring and at the piperazine nitrogen was examined. The compounds showed low to moderate affinities at both, D2R and D3R. N-Phenyl compounds LINS01005 (1d), LINS01011 (1h), LINS01012 (1i) and LINS01016 (1k) showed the highest affinities in the set to D3R (Ki 0.3–1.5 μM), indicating that N-phenylpiperazine moiety increases the affinity to this receptor subtype with some selectivity, since they showed lower affinities to D2R (Ki 1.3–5.5 μM). With the LINS01 compounds showing moderate binding affinity, new lead structures for optimization with regards to combined H3R and D2R/D3R-ligands are provided. Graphic abstract: Histamine and dopamine neuronal pathways display interesting overlapping in the CNS, and thus LINS01 compounds previously reported as histamine H3 receptor antagonists were evaluated as dopamine D2R and D3R ligands. The compounds showed micromolar affinities to both receptors[Figure not available: see fulltext.].
Chemoselective Epoxidation of Allyloxybenzene by Hydrogen Peroxide Over MFI-Type Titanosilicate
Fujitani, Tadahiro,Hong, Dachao,Ito, Satoru,Ji, Xinyi,Kon, Yoshihiro,Nakashima, Takuya,Osuga, Ryota,Sato, Kazuhiko,Yokoi, Toshiyuki
supporting information, (2020/04/15)
The chemoselective synthesis of 2-(phenoxymethyl)oxirane from allyloxybenzene is achieved with over 90 % yield in a sustainable reaction system using titanium-substituted silicalite-1 (TS-1) as a catalyst, hydrogen peroxide (H2O2) as an oxidant, and a mixture of MeOH/MeCN as a solvent at 40 °C. No acid-catalyzed side reactions prompted by the Lewis acidity of the Ti active site in TS-1 are observed. The TS-1 catalyst can also promote the formation of oxiranes from various p-substituted allyloxybenzenes in good yields. The reaction mechanism is investigated through the reaction with other allyloxy compounds. The results, which are supported by DFT calculations, indicate that an active species of Ti peroxides formed from the reaction of TS-1 with H2O2 selectively oxidizes the allyloxybenzene to 2-(phenoxymethyl)oxirane.
Enantioselective Construction of Si-Stereogenic Center via Rhodium-Catalyzed Intermolecular Hydrosilylation of Alkene
He, Tao,Liu, Li-Chuan,Ma, Wen-Peng,Li, Bin,Zhang, Qing-Wei,He, Wei
supporting information, p. 17011 - 17015 (2020/11/30)
Catalytic, enantioselective synthesis of stereogenic silicon compounds remains a challenge. Herein, we report a rhodium-catalyzed regio- and enantio-selective intermolecular hydrosilylation of alkene with prochiral dihydrosilane. This new method features a simple catalytic system, mild reaction conditions and a wide functional group tolerance.
Investigating the microwave-accelerated Claisen rearrangement of allyl aryl ethers: Scope of the catalysts, solvents, temperatures, and substrates
Hui, Zi,Jiang, Songwei,Qi, Xiang,Ye, Xiang-Yang,Xie, Tian
supporting information, (2020/05/18)
The microwave-accelerated Claisen rearrangement of allyl aryl ethers was investigated, in order to gain insight into the scope of the catalysts, solvents, temperatures, and substrates. Among the catalysts examined, phosphomolybdic acid (PMA) was found to greatly accelerate the reaction in NMP, at temperatures ranging from 220 to 300 °C. This method was found to be useful for preparing several intermediates previously reported in the literature using precious metal catalysts such as Au(I), Ag(I), and Pt(II). Additionally, substrates bearing bromo and nitro groups on the aryl portion required careful tailoring of the reaction conditions to avoid complex product profiles.