Welcome to LookChem.com Sign In|Join Free

CAS

  • or

25079-96-3

Post Buying Request

25079-96-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

25079-96-3 Usage

Synthesis Reference(s)

Synthetic Communications, 24, p. 601, 1994 DOI: 10.1080/00397919408012637

Check Digit Verification of cas no

The CAS Registry Mumber 25079-96-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,5,0,7 and 9 respectively; the second part has 2 digits, 9 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 25079-96:
(7*2)+(6*5)+(5*0)+(4*7)+(3*9)+(2*9)+(1*6)=123
123 % 10 = 3
So 25079-96-3 is a valid CAS Registry Number.
InChI:InChI=1/C10H13NO/c1-8-3-5-10(6-4-8)7-11-9(2)12/h3-6H,7H2,1-2H3,(H,11,12)

25079-96-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name N-[(4-methylphenyl)methyl]acetamide

1.2 Other means of identification

Product number -
Other names N-(p-methylbenzyl)acetamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:25079-96-3 SDS

25079-96-3Relevant articles and documents

Decarboxylative Ritter-Type Amination by Cooperative Iodine (I/III)─Boron Lewis Acid Catalysis

Narobe, Rok,Murugesan, Kathiravan,Schmid, Simon,K?nig, Burkhard

, p. 809 - 817 (2022/01/15)

Recent years have witnessed important progress in synthetic strategies exploiting the reactivity of carbocations via photochemical or electrochemical methods. Yet, most of the developed methods are limited in their scope to certain stabilized positions in molecules. Herein, we report a metal-free system based on the iodine (I/III) catalytic manifold, which gives access to carbenium ion intermediates also on electronically disfavored benzylic positions. The unusually high reactivity of the system stems from a complexation of iodine (III) intermediates with BF3. The synthetic utility of our decarboxylative Ritter-type amination protocol has been demonstrated by the functionalization of benzylic as well as aliphatic carboxylic acids, including late-stage modification of different pharmaceutical molecules. Notably, the amination of ketoprofen was performed on a gram scale. Detailed mechanistic investigations by kinetic analysis and control experiments suggest two mechanistic pathways.

Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex

Bera, Jitendra K.,Pandey, Pragati

supporting information, p. 9204 - 9207 (2021/09/20)

A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.

Environmentally benign decarboxylative: N-, O-, and S-Acetylations and acylations

Ghosh, Santanu,Purkait, Anisha,Jana, Chandan K.

supporting information, p. 8721 - 8727 (2020/12/30)

An operationally simple and general method for acetylation and acylation of a wide variety of substrates (amines, alcohols, phenols, thiols, and hydrazones) has been reported. Meldrum's acid and its derivatives have been used as an air-stable, non-volatile, cost-effective, and easy to handle acetylating/acylating agent. Easily separable byproducts (CO2 and acetone) allowed the isolation of analytically pure acetylated products without the requirement of work-up and any chromatography. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 25079-96-3