Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27911-63-3

Post Buying Request

27911-63-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27911-63-3 Usage

Chemical Properties

white crystals

Uses

(1R)?-?1-?(2-?Pyridinyl)?ethanol is a building block used in the synthesis of highly potent and selective chiral inhibitors of PDE5.

Check Digit Verification of cas no

The CAS Registry Mumber 27911-63-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,9,1 and 1 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 27911-63:
(7*2)+(6*7)+(5*9)+(4*1)+(3*1)+(2*6)+(1*3)=123
123 % 10 = 3
So 27911-63-3 is a valid CAS Registry Number.
InChI:InChI=1/C7H9NO/c1-6(9)7-4-2-3-5-8-7/h2-6,9H,1H3/t6-/m1/s1

27911-63-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (41304)  (R)-α-Methyl-2-pyridinemethanol  ≥98.0% (GC)

  • 27911-63-3

  • 41304-1G-F

  • 1,832.22CNY

  • Detail

27911-63-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (1R)-1-pyridin-2-ylethanol

1.2 Other means of identification

Product number -
Other names hydroxyethylpyridine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27911-63-3 SDS

27911-63-3Relevant articles and documents

Amino Acid-Functionalized Metal-Organic Frameworks for Asymmetric Base–Metal Catalysis

Newar, Rajashree,Akhtar, Naved,Antil, Neha,Kumar, Ajay,Shukla, Sakshi,Begum, Wahida,Manna, Kuntal

supporting information, p. 10964 - 10970 (2021/03/29)

We report a strategy to develop heterogeneous single-site enantioselective catalysts based on naturally occurring amino acids and earth-abundant metals for eco-friendly asymmetric catalysis. The grafting of amino acids within the pores of a metal-organic framework (MOF), followed by post-synthetic metalation with iron precursor, affords highly active and enantioselective (>99 % ee for 10 examples) catalysts for hydrosilylation and hydroboration of carbonyl compounds. Impressively, the MOF-Fe catalyst displayed high turnover numbers of up to 10 000 and was recycled and reused more than 15 times without diminishing the enantioselectivity. MOF-Fe displayed much higher activity and enantioselectivity than its homogeneous control catalyst, likely due to the formation of robust single-site catalyst in the MOF through site-isolation.

Palladium-Catalyzed Selective Reduction of Carbonyl Compounds

Sarkar, Nabin,Mahato, Mamata,Nembenna, Sharanappa

, p. 2295 - 2301 (2020/05/18)

Two new examples of structurally characterized β-diketiminate analogues i.e., conjugated bis-guanidinate (CBG) supported palladium(II) complexes, [LPdX]2; [L= {(ArHN)(ArN)–C=N–C=(NAr)(NHAr)}; Ar = 2,6-Et2-C6H3], X = Cl (1), Br (2) have been reported. The synthesis of complexes 1–2 was achieved by two methods. Method A involves deprotonation of LH by nBuLi followed by the treatment of LLi (insitu formed) with PdCl2 in THF, which afforded compound 1 in good yield (75 %). In Method B, the reaction between free LH and PdX2 (X = Cl or Br) in THF allowed the formation of complexes 1 (Yield 73 %) and 2 (Yield 52 %), respectively. Moreover, these complexes were characterized thoroughly by several spectroscopic techniques (1H, 13C NMR, UV/Vis, FT-IR, and HRMS), including single-crystal X-ray structural and elemental analyses. In addition, we tested the catalytic activity of these complexes 1–2 for the hydroboration of carbonyl compounds with pinacolborane (HBpin). We observed that compound 1 exhibits superior catalytic activity when compared to 2. Compound 1 efficiently catalyzes various aldehydes and ketones under solvent-free conditions. Furthermore, both inter- and intramolecular chemoselectivity hydroboration of aldehydes over other functionalities have been established.

Low-valence anionic α-diimine iron complexes: Synthesis, characterization, and catalytic hydroboration studies

Bodensteiner, Michael,Coburger, Peter,Demeshko, Serhiy,Gawron, Martin,Maier, Thomas M.,Meyer, Franc,Wolf, Robert,de Bruin, Bas,van Leest, Nicolaas P.

, p. 16035 - 16052 (2020/11/20)

The synthesis of rare anionic heteroleptic and homoleptic α-diimine iron complexes is described. Heteroleptic BIAN (bis(aryl)iminoacenaphthene) complexes 1-[K([18]c-6)-(thf)0.5] and 2-[K([18]c-6)(thf)2] were synthesized by reduction of the [(BIAN)FeBr2] precursor complex using stoichiometric amounts of potassium graphite in the presence of the corresponding olefin. The electronic structure of these paramagnetic species was investigated by numerous spectroscopic analyses (NMR, EPR, 57Fe M?ssbauer, UV-vis), magnetic measurements (Evans NMR method, SQUID), and theoretical techniques (DFT, CASSCF). Whereas anion 1 is a low-spin complex, anion 2 consists of an intermediate-spin Fe(III) center. Both complexes are efficient precatalysts for the hydroboration of carbonyl compounds under mild reaction conditions. The reaction of bis(anthracene) ferrate(1-) gave the homoleptic BIAN complex 3-[K([18]c-6)(thf)], which is less catalytically active. The electronic structure was elucidated with the same techniques as described for complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] and revealed an Fe(II) species in a quartet ground state.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27911-63-3